共查询到20条相似文献,搜索用时 15 毫秒
1.
在分析车牌定位现有算法的基础上,根据车牌的特点,提出一种新的综合利用车牌纹理特征和边缘颜色对的车牌定位方法.首先根据车牌的纹理特征和结构特点进行粗定位,确定车牌的候选区域,然后对候选车牌区域进行边缘颜色对的检测,根据车牌背景与字符有固定颜色搭配的特点,确定车牌区域.实验结果表明,该算法能有效地对车牌进行定位,提高了车牌定位的可靠性. 相似文献
2.
车牌识别是图像识别技术在智能交通领域应用的重要研究之一,是实现交通管理智能化的重要环节。我国交通管理部门对汽车牌照的样式制定了严格的规范,这些规范将为车牌自动识别技术的实现提供重要的技术依据。车牌识别研究充分利用这些规范进行设计,采用彩色数字图像模式识别方法,针对彩色为24位,大小为640×480,以及蓝底白字车牌的图像进行识别研究,并具体描述图像车牌的预处理、车牌特征提取和车牌识别三个连续的过程。在Visual C++环境下实现对汽车牌照自动识别功能。实验结果表明,车牌识别自动技术识别效果可靠,具有很好的实用性。 相似文献
3.
4.
车牌识别系统是智能交通系统的重要环节,车牌定位是车牌识别的前提和关键。车牌定位的准确率直接影响到后续字符识别效果,对车牌识别率的高低有重大影响。分析现有的车牌定位算法,比较不同算法的处理效果及其定位精确度等问题。 相似文献
5.
基于结构特征的车牌定位算法研究 总被引:2,自引:0,他引:2
本文提出了一种基于结构特征的车牌定位算法。首先,利用车牌区域密度比较大的信息得到包含车牌区域在内的若干候选区域,然后利用车牌自身异于背景区域的四个结构特征从若干候选区域中提取车牌区域.本文给出了该算法的三个阈值:(1) 车牌区域的宽高比的范围是[2,5];(2)车牌区域的密度大于0.25;(3)车牌区域内灰度跳变次数的范围是[5,15]。通过大量实验得出,该算法的准确率达到了90.17%。 相似文献
6.
7.
8.
车辆牌照的识别技术是智能交通系统重要研究课题之一,而车辆牌照的定位又是车牌识别的关键点。本文采用了一种新型的综合利用车牌纹理特征、颜色特征和几何特征的快速定位算法。该算法利用数学形态学充分挖掘车牌纹理特征以及消除噪声干扰,把图像分割为若干个子区域,利用纹理条件和颜色条件判断,对子区域进行独特的分类和聚类融合,最终由粗至细精确地定位出车牌位置,然后利用Hough变换矫正倾斜的车牌图像并去除边框和铆钉,为后续车牌字符的分割识别步骤打下良好基础。实验结果表明,本文的研究成果能有效定位车牌且效果显著。 相似文献
9.
10.
11.
12.
13.
14.
为了解决车牌定位过程中拍摄图像背景复杂,噪声大,检测准确率偏低的问题,提出简便有效抗干扰强的车牌定位算法.首先将彩色图像转换为灰度图像,其次设定灰度门限区分图像目标和背景,进行二值化处理,然后使用Sobel边缘检测算子计算图像梯度幅度值,检测图像边缘点,采用局部图像平滑技术中值滤波对图像去除干扰,最后根据车牌区域纹理信息较其它区域丰富的特征,采用投影法,通过水平和垂直方向上投影分布特征的反复提取,准确检测定位车牌.实验结果表明,该方法定位出的车牌区域图像清晰度和准确度较高. 相似文献
15.
车牌自动定位与模糊识别算法 总被引:4,自引:2,他引:4
提出一种基于阈值分割与区域矩化的车牌定位方法,先得到候选车牌区,然后根据车牌区的特征进行筛选得到车牌区,并给出了快速区域矩化方法。字符识别采用两级模糊识别方法,粗分类得到动态的候选集,然后根据该候选集进行细分类。实验结果表明,该方法能对车牌快速准确定位并识别字符。 相似文献
16.
基于模板匹配和特征点匹配相结合的快速车牌识别方法 总被引:20,自引:0,他引:20
介绍了一种简单易行的车牌识别方法。对于车牌灰度图像进行滤波去噪后先用峰谷法二值化,再用垂直投影法进行分割,最后进行模板匹配,并用特征点匹配对几组易出错的字符进行检查,从而得到车牌号。 相似文献
17.
违法占道拍摄出的单帧车辆图像具有数据量大、时效性强,检测环境复杂等特点.对其检测需要花费大量的人力与物力.并且人们在定位过程中,无法避免因经验、疲劳等方面的干扰,导致遗漏和错误定位.为此本文从视觉感知角度提出计算机多尺度辅助定位车牌算法.模拟视觉感知原理,从车辆特征、纹理特征、颜色特征尺度,逐次聚焦至车牌所在区域.提出了完整的单帧图像车牌定位流程.并且提出基于边界对的车牌区域准确定位算法.通过对实拍的交通图像实验,表明本算法对于正对的车辆有较高的准确率,符合人类视觉感知的过程可实时的对图像进行车牌检测,可同时检测单幅图片的多个车牌.但对于光线过暗、过强或者颜色失真的情况,仍需要进一步的研究. 相似文献
18.
针对车牌区域难以定位的问题,本文提出了一种基于彩色边缘检测及综合特征的车牌定位方法。该算法利用车牌底色与字符颜色有几种固定搭配的特点,对彩色图像进行边缘提取,然后利用车牌区域的结构与纹理特征定位车牌,有效减少了车牌大小、位置以及背景复杂等方面的限制。实验证明该算法耗时少,准确率高,鲁棒性好。 相似文献
19.
根据车牌区域的灰度分布特征,提出一种定位车牌区域的新方法.该方法先利用车牌区域灰度分布特征,对车辆图片进行粗定位并得到车牌上下边界;再根据车牌区域字符紧密性特征,利用垂直投影方法初步得到车牌的左右边界,最后根据字符宽度和间距进一步修正车牌的左右边界.经实验证明,该方法具有在复杂背景下适应性好、抗干扰、实时性好、定位精确等特点. 相似文献