首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《煤》2019,(12):7-9
为研究五里堠煤业3号和4号近距离煤层联合开采时的合理错距及矿压显现规律,采用理论分析,基于稳压区理论和减压区理论计算得出3号煤层和4号煤层工作面间的最小错距在14.35~28.04 m;通过矿压监测和巷道表面位移监测,结果表明:3号和4号煤层进行联合开采时,上下工作面间的错距大于30 m时为合理错距,此时支架的工作阻力正常,未出现超限现象,回采巷道在联合开采期间围岩变形量较小。  相似文献   

2.
针对苏村煤矿6煤、10煤分层同采错距不合理,上下两工作面开采受动压的相互影响,造成工作面冒顶、片帮、支架折损等问题,通过采用理论分析、数值模拟以及工程应用相结合的方法对邻近煤层同采工作面巷道布设位置及错距进行了优化研究。研究结果表明:考虑不同开采方式下10煤层巷道围岩应力变化特征,确定上下煤层巷道采用对齐式布置;考虑下煤层开采时覆岩移动,下煤层区段煤柱应大于16.7 m;上下煤层同采时工作面合理错距在45 m左右。研究结果应用工程实践表明,同采期间工作面支架受力平稳,实现了邻近煤层安全高效同采,对类似条件下的煤层群开采具有重要的指导意义。  相似文献   

3.
木瓜煤矿为极近距离煤层群开采;本文以10-102工作面切眼巷道位置选择为实例,对下层煤10-102工作面切眼巷道应选择在上层煤9-104工作面遗留煤柱影响范围的低应力区内进行探讨;通过理论计算与Flac3D模拟软件建立模型进行分析,当10-102工作面切眼与上煤层9-104工作面遗留煤柱错距为0 m、4 m、8 m、12 m时,探讨切眼受遗留煤柱影响的围岩变形及塑性区分布情况,其中煤柱错距为4 m时,切眼受上层煤影响的程度降到最低;通过煤矿现场验证,10-102工作面切眼掘进后,围岩变形控制在有效范围内,围岩状况良好,能满足综采设备安装要求;实践表明,遗留煤柱错距选择4 m较为合理。  相似文献   

4.
基于采场围岩控制理论,通过二维相似模型实验台设计了近距离煤层开采的相似模型实验,研究了近距离煤层开采条件下的采场围岩运移规律,采场应力传递规律、着重分析了煤柱附近的应力分布及演化规律,并运用数值计算的方法,以相同支护条件下的巷道收敛量为考察对象,计算了不同错距时的巷道变形量。结果表明,下部煤层开采时,上层煤遗留煤柱附近会产生较高的应力集中,并随下部煤层的开采,应力集中程度越来越高;下部煤层巷道与煤柱错开距离并非越远越好,错距-巷道变形曲线成V形,即存在最优错距使巷道更易于维护,对于平朔矿区安家岭井工矿,此最优错距为5 m。  相似文献   

5.
近距离煤层联合开采工作面合理错距研究   总被引:2,自引:2,他引:2  
为确定近距离煤层联合开采合理错距,以某矿近距离工作面为工程背景,采用理论分析、数值模拟进行研究。研究表明:运用稳压区与减压区理论对联合开采合理错距进行计算,得出合理错距分别为38.9-43.9 m、21.9-33.9 m。采用FLAC3D数值模拟分析了垂直应力及位移演化特征、应力参数变化特征,得出合理错距为40 m,31118工作面超前122210工作面联合开采。  相似文献   

6.
通过分析灵石煤矿极近距离9#煤层和10#煤层的090105工作面与100105工作面围岩特性,建立工作面同采数值模拟模型,模拟工作面错距为10 m、15 m、25 m、30 m及40 m时冒落带、裂隙带高度以及超前支承压力的影响。结果表明,工作面同采错距为25~30 m时采场扰动影响最小。  相似文献   

7.
为解决近距离煤层联合开采下位煤层回采巷道的合理布置难题,结合某煤矿31101工作面和11201工作面实际情况,建立巷道围岩稳定性分析的二维数值计算模型,详细模拟分析了31101工作面开采后底板垂直应力分布规律及11201工作面回采巷道处于不同位置时的巷道围岩位移分布规律。分析结果表明:11201轨道平巷应内错31101工作面35 m左右布置,11201运输平巷应外错31101工作面70 m左右布置时,不仅能够使巷道所处应力环境较为有利,而且巷道围岩变形较为对称,避免支架承载过程中处于偏载状态,影响支架承载性能。  相似文献   

8.
《煤矿安全》2015,(12):50-53
为了确保近距离煤层联合开采条件下工作面回采的安全,通过理论分析、UDEC数值模拟等手段并结合现场监测数据,研究某矿下煤层工作面回采时的常规错距,并从理论上给出其计算公式。研究表明:近距离煤层联合开采时,不同错距条件下的应力分布规律存在明显差异,最终确定工作面常规错距为45~50 m。  相似文献   

9.
近距离煤层群下行开采中,上位煤层开后造成下位煤层采场围岩力学环境发生改变,回采巷道的合理布置是下位煤层安全高效开采的关键。因此,本文以甘沟煤矿为工程背景,采用理论分析、数值计算、现场实测等手段,对上位煤层开采后,残留煤柱对底板影响进行分析。研究结果表明:利用滑移线理论确定B4-2号煤层开采后对底板影响的最大深度为18.7 m,选取内错式布置,内错距不小于6.03 m;采用UDEC数值模拟软件对B4-2煤层的残留煤柱下方底板应力分布规律分析,得到煤柱影响下的底板应力演化特征,煤层开采后残留煤柱造成底板破坏深度达20 m左右,理论部分计算符合;通过对不同内错距下塑性区域分布进行分析,得到内错距为15 m时,对下位煤层的影响最小。  相似文献   

10.
根据山西焦煤集团西铭矿49405工作面实际地质条件,利用理论分析和FLAC3D数值模拟软件,对工作面切眼的围岩变形和控制进行分析研究,得到以下结论:上煤层开采后,底板破坏深度大于层间岩层厚度,导致下煤层回采巷道围岩破碎,增加支护难度;利用数值模拟软件分析上煤层开采后垂直应力分布规律,发现在煤柱下形成应力峰值,向采空区方向应力逐渐降低;确定切眼合理位置,认为切眼布置要与上煤层煤柱错距6.0m;保障工作面的正常生产。  相似文献   

11.
结合天悦煤矿4.0 m极近距离煤层赋存特点,通过现场矿压监测得出上下层煤支承压力分布规律及围岩破坏特点。并对下层煤提出减压区开采和稳压区开采2种开采方式,最终通过理论分析及数值模拟方法综合对比研究,确定合理错距。  相似文献   

12.
开采保护层是突出矿井防治煤与瓦斯突出的主要有效方法之一。长平矿3#煤层属于较难抽采煤层,为了安全开采3#煤层,应首先开采其下部邻近8#煤层,以对3#煤层起到卸压保护作用。本文以8#煤层所属84301工作面为试验对象,利用通用离散元程序(UDEC)数值模拟方法,模拟分析了84301工作面矿压显现规律,确定了工作面直接顶及老顶初次垮落步距和周期垮落步距,研究了84301工作面围岩应力分布规律及围岩位移量规律,可为被保护层3#煤层开采时顶板管理等提供技术参考。  相似文献   

13.
针对西曲矿煤层群遗留煤柱回采巷道布置问题,采用理论分析和数值模拟手段分别研究了上部煤层开采后对底板的最大破坏深度、遗留煤柱在中部煤层影响区域;下部煤层开采垮落煤柱影响区域,下沉变形裂隙区域;最后通过UDEC数值模拟分别研究了外错、重叠、内错6个巷道布置方案的围岩变形情况,最终通过多因素分析确定西曲矿14308工作面巷道内错11 m布置。  相似文献   

14.
近距离煤层群开采时,上下工作面错距的大小会直接影响到下层煤工作面应力特性。通过理论分析以及数值模拟相结合的方式,研究了不同错距条件下上下层工作面开采引起的应力的相互影响关系,初步确定了合理的开采错距。现场通过钻孔窥视和矿压观测对比研究了20m和45m错距下顶板破坏情况以及工作面矿压显现规律,最终确定了合理的错距。  相似文献   

15.
针对晋华宫煤矿多煤层开采围岩受开采扰动影响较大的问题,确定开采过程中围岩运动变形规律是研究受采动影响围岩破坏机理的前提。采用相似材料模拟方法,分析了多煤层开采覆岩变形、破坏及垮落状况和围岩应力分布规律;通过数值模拟对多煤层开采产生的复杂应力场、位移场和煤层间相互影响规律进行了系统研究。研究结果表明:晋华宫煤矿多煤层开采过程中11~#煤层8714工作面前方5 m处支承压力最大达到14.2 MPa,应力集中系数1.6;其邻近的2714巷道支承压力最大为12.8 MPa,应力集中系数1.5,影响范围15 m。分析得出,11~#煤层8716工作面两巷受到上煤层8714工作面采动、本煤层侧向支承压力与超前支承压力的共同影响,最终使5716巷道处于动态高应力状态,围岩发生持续失稳破坏。  相似文献   

16.
为得出不同错距下极近距离煤层联合开采矿压规律,通过对山西灵石某矿9#和10#极近距离煤层联合开采工作面应用常规错距理论和现场矿压观测分析,论证得出在坚硬顶板条件下,下煤层工作面只能布置在上煤层采空区的稳压区,联合开采的最小合理错距为26 m。矿压观测分析表明:在稳压区布置下煤层工作面,上下煤层两工作面压力均有明显减小;若将上下两工作面距离再次拉大,矿压显现改善不是很明显。  相似文献   

17.
《煤》2021,30(11)
文章以采空区下近距离煤层回采巷道合理位置选择为背景,通过分析上煤层遗留煤柱在煤层底板中的应力传播规律并计算出巷道与煤柱的内错距离应该大于12.8 m。利用数值模拟分析不同错距下巷道屈服破坏、应力分布和围岩变形规律,最终得出错距15 m情况下,可以保证巷道围岩稳定性。  相似文献   

18.
为确定极近距离煤层同采工作面的合理错距,分析讨论减压区开采、稳压区开采两种不同布置方式,计算得出9#煤层开采对底板的破坏深度为9.11m。分析上部煤层开采对下部煤层围岩稳定性的影响,确定该矿采用稳压区开采布置方式。采用理论技术和数值模拟方法综合研究表明,同采工作面合理错距应不小于35m。  相似文献   

19.
保护层卸压开采两煤层终采线合理位置确定   总被引:2,自引:0,他引:2  
为了研究保护层开采过程中围岩应力分布演化及其对前方底板巷的动态影响规律,基于采动支承压力在煤层前方及底板内的演化规律,运用FLAC^2D模拟分析了淮南矿区11煤作为13煤下保护层开采过程中在不同煤柱宽度下的采场围岩应力分布特点,并进行了巷道围岩变形监测。结果表明:下保护层开采过程中,留110m煤柱可以减弱采动对前方底板巷道的影响,当开采上方解放层时,应避免两煤层终采线留设在同一位置,错距为30—50m,可以减少采动应力叠加影响。  相似文献   

20.
为确定某煤矿3和4号近距离煤层同采时下煤层回采巷道布置方式,结合煤层地质条件,采用理论分析确定下煤层巷道采用外错式布置方式,运用FLAC3D数值模拟软件确定下煤层回采巷道的合理外错距离为20 m,通过现场对4号煤层3409工作面材料巷顶底板及两帮变形进行观测分析,巷道在距工作面60 m以内顶板最大位移为150 mm,两帮最大位移为120 mm,超前工作面60 m以外,巷道变形量趋于稳定,结果表明,2层煤同时开采,工作面巷道外错20 m,在加固条件及合理的锚杆锚网支护作用下,巷道稳定性良好,巷道围岩变形得到了有效控制,能够满足工作面正常推进的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号