首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
不同气氛下柴油热解及热动力学特性分析   总被引:2,自引:0,他引:2  
利用热重分析技术研究了不同载气流量、载气气氛和升温速率下柴油的热解过程.比较分析了单一反应模型和DAEM模型对柴油热解动力学分析的适应性.结果表明,单一反应模型不能在整个温度区间内对柴油热解特性进行预测;而DAEM模型可以由3条不同升温速率下的失重曲线直接得到不同失重率下柴油热解的活化能分布和频率因子的值,较为准确地求解动力学参数.由DAEM模型所得的不同气氛下活化能分布曲线表明,CO2气氛中柴油稳定性更好;柴油在CO2气氛中比N2气氛中热解速度大.  相似文献   

2.
利用程序升温热重技术研究了宝日希勒褐煤和包头烟煤热解的失重过程,比较分析了单一反应模型和DAEM对其动力学分析的适应性。单一反应模型仅需一条失重曲线就可以获得动力学参数,但一般需要对失重曲线进行分段处理,且只能得到某一温度范围内活化能的平均值。Miura积分法可以在DAEM的应用中不需事先假设活化能分布的形式和频率因子为定值,由至少3条不同升温速率下的失重曲线直接得到煤热解的活化能分布和频率因子的值。Miura积分法的结果表明,宝日希勒褐煤和包头烟煤热解的活化能随着失重率的升高而增大,活化能分布于250~400kJ/mol的区间。频率因子先随活化能的升高而增大,而当活化能大于300kJ/mol时,频率因子趋于水平。DAEM能描述非等温热解自低温到高温的全过程,对煤种和升温速率变化有宽广的适应性。  相似文献   

3.
为了研究植物化工醇废液的热解反应机理,将废液置于氮气气氛下进行加热反应。利用热重分析仪考察了不同升温速率对废液热解反应影响,得到了TG/DTG曲线。实验结果表明废液热解反应有五个波动峰,以及蒸发、热解和无机盐反应三个过程,利用Coats-Redfern法计算了动力学参数,热解过程活化能和频率因子均最小,无机盐反应过程最大,活化能大小与升温速率和反应阶段有关。改变升温速率并不会明显改变热解反应特性,热解过程主要是挥发分析出,失重比和失重速率均最大。  相似文献   

4.
以废弃柞木段为研究对象,进行了不同升温速率(5,15,25℃/min)下的热解失重实验以及TG和DTG曲线分析,采用分布活化能模型(DAEM)和一级反应模型研究其反应动力学特性。结果表明,脱水干燥的废弃柞木段热解过程主要分为过渡、挥发分析出和碳化3个阶段,随着升温速率的提高,DTG曲线有向高温侧移动的趋势,不同升温速率下的最大热解速率所对应的温度在360~380℃;采用DAEM得到的主热解阶段活化能为210~260 k J/mol,一级反应模型得到的主热解阶段活化能约为62 k J/mol,两种模型都能够较好地描述废弃柞木段主热解阶段,而DAEM模型更为全面。  相似文献   

5.
城市污泥耦合锯末共热解特性及动力学分析   总被引:1,自引:0,他引:1  
为实现城市污水污泥与锯末共热解的工业应用,利用热重分析仪对污泥耦合锯末共热解过程进行了实验与理论研究,揭示了锯末添加比例、升温速率对污泥热解特性的影响,并基于Coats-Redfern法,结合20种常见固体热解机理函数确定了污泥耦合锯末共热解过程最优热解动力学模型。结果表明:锯末相比污泥具有更低的表观活化能,最大失重速率是污泥的4倍;锯末的添加使得热重分析(TG)曲线向下偏移,最大失重速率明显增大,挥发份析出特性变强;随着升温速率的增大,固态残渣增加,最大失重速率减小,不利于热解反应的进行;按7∶3比例混合的污泥锯末耦合热解微分热重分析(DTG)曲线峰前(230~350℃)表观活化能为38.81 k J/mol,最优动力学模型为D_5-3D扩散模型;峰后(350~500℃)表观活化能为29.93 k J/mol,最优动力学模型为C~2-化学反应模型。  相似文献   

6.
猪粪热解特性及其动力学研究   总被引:1,自引:0,他引:1  
在程序控温热重分析仪上进行了不同升温速率(10,20,30,50℃/min)的猪粪热解失重试验,获得了猪粪热解特性参数;采用分布活化能模型(DAEM)进行动力学分析,计算得到整个热解过程的活化能和频率因子的分布规律。结果表明,猪粪热解过程呈现失水干燥段、热解过渡段、挥发分析出段和碳化段,升温速率对猪粪的热解有一定的影响,表现为随升温速率的升高,DTG曲线向高温侧移动;动力学分析表明,猪粪热解活化能在52~113 kJ/mol变化,低于锯末、稻壳、稻秆、椰壳热解的活化能,说明猪粪较其他生物质易受热分解;同时猪粪热解的活化能和频率因子之间存在动力学补偿关系,但整个热解过程中这种补偿关系呈分段趋势。  相似文献   

7.
生物质成型燃料热解特性及动力学研究   总被引:3,自引:0,他引:3  
杨帅  杨树斌  甘云华  黄开泉  杨泽亮 《节能技术》2010,28(3):199-201,205
利用NETZSCH STA409PC型热重-差热分析仪对生物质成型燃料在以10℃/min、20℃/min及30℃/min升温速率下的热解过程进行了热重分析。对TG-T、DTG-T曲线分析,结果表明生物质成型燃料热解过程分为干燥、热解预热、热解与炭化4个阶段,热解过程随着升温速率升高出现热滞后现象。对剧烈失重区间建立了反应动力学模型,求解出此温度区间的表观活化能、频率因子等动力学参数。  相似文献   

8.
孙云娟  蒋剑春  赵淑蘅 《太阳能学报》2016,37(11):2747-2753
利用热重分析仪对稻壳与褐煤单独及共热解过程进行研究。动力学分析选用Coats-Redfern模型和分布活化能模型(DAEM),发现Coats-Redfern模型无法在整个温度区间内对生物质的热解进行预测,只能将热解过程分为多段的单一反应;DAEM法计算得到的热解活化能随原料转化率的增大,大体呈现升高—平稳—升高的趋势;稻壳热解平均活化能约为182 k J/mol,褐煤为288 k J/mol,共热解因混合比例的不同而有所差异,为180~190 k J/mol,远小于褐煤,推测生物质的存在对煤炭热解具有一定的促进作用;对比Coats-Redfern模型和DAEM模型对于共热解过程动力学分析,发现DAEM模型更适于模拟稻壳与褐煤共热解过程中的活化能变化情况。  相似文献   

9.
通过热重分析手段研究了杜氏盐藻在室温至900℃下的热解行为和特性,采用高纯氮气作保护气,升温速率分别为5℃/min、10℃/min、20℃/min和40℃/min.TG、DTG曲线的分析表明,热解过程随温度升高经历3个不同阶段.此外,随着升温速率增大,热解的初始温度和峰值温度均增大,且总失重增加.采用等转化速率法和主曲线法对盐藻热解过程进行动力学分析.结果表明,表观热解反应遵循单一动力学机理模型,反应动力学过程为简单级数反应机理模型Fn.求得热解反应表观平均活化能Ea为146.3 kJ/mol,指前因子A为4.28×1013s-1,指数n为2.4.  相似文献   

10.
《可再生能源》2013,(7):70-76
利用加压热重仪对纤维素进行了热重分析实验,获得了不同升温速率(5,10,20 K/min)和不同压力(0.1,0.5,1,1.5,2 MPa)条件下的热重曲线TG和失重速率曲线DTG,并通过热分析数学方法获得了热解动力学参数。结果表明,在各压力条件下,提高升温速率,纤维素主热解区间均往高温区移动,热解略有加深;在各升温速率条件下,增大压力,主热解区间均往低温区移动,热解时间缩短,剩余残渣百分比增大;在同一升温速率下,随着压力的增大,热解活化能增大,且升温速率越大,活化能随压力增大越明显;在同一压力下,随着升温速率的提高,热解活化能增大,且压力越大,活化能随升温速率增大趋势越明显;在各条件下热解活化能和指前因子存在着较好的补偿效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号