首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the key structural features of a surface microfluidic (SMF) device is the surface coating, since it directly affects both the performance and reliability of the SMF device. This work examines and compares the performance of liquid dielectrophoresis (LDEP) SMF devices, fabricated with conventional spin-coated Teflon? surface to those coated with a recently developed fluoropolymer composite coating, which have been shown to be superior for low-voltage electrowetting actuation. We have focused on SMF devices that leverage LDEP and utilize high AC voltages to actuate aqueous samples on hydrophobic surfaces and produce droplet arrays of controlled size and structure to facilitate rapid and large-scale combinatorial bio-assays. Our findings demonstrate the superior performance, robustness and reliability of the composite coating over the conventional spin-coated Teflon? coating, for repeated high-voltage, high-frequency LDEP actuations for homogenous, emulsion and variable volume aqueous sample dispensing.  相似文献   

2.
3.
We demonstrate controlled guiding of nanoliter emulsion droplets of polar liquids suspended in oil along shallow hydrophilic tracks fabricated at the base of microchannels located within microfluidic chips. The tracks for droplet guiding are generated by exposing the glass surface of polydimethylsiloxane (PDMS)-coated microscope slides via femtosecond laser ablation. The difference in wettability of glass and PDMS surfaces together with the shallow step-like transverse topographical profile of the ablated tracks allows polar droplets wetting preferentially the glass surface to follow the track. In this study, we investigate guiding of droplets of two different polar liquids (water/ethylene glycol) with and without surfactant suspended in an oil medium along surface tracks of different depths of 1, 1.5, and 2 \(\upmu\)m. The results of experiments are also verified with computational fluid dynamics simulations. Guiding of droplets along the tracks as a function of the droplet composition and size and the surface profile depth is evaluated by analyzing the trajectories of moving droplets with respect to the track central axis, and conditions for stable guiding are identified. The experiments and numerical simulations indicate that while the track topography plays a role in droplet guiding using 1.5- and 2-\(\upmu\)m deep tracks, for the case of the smallest track depth of 1 \(\upmu\)m, droplet guiding is mainly caused by surface energy modification along the track rather than the presence of a topographical step on the surface. Our results can be exploited to sort passively different microdroplets mixed in the same microfluidic chip, based on their inherent wetting properties, and they can also pave the way for guiding of droplets along reconfigurable tracks defined by surface energy modifications obtained using other external control mechanisms such as electric field or light.  相似文献   

4.
We use a three-dimensional multiphase lattice-Boltzmann model to study basic operations such as transport, merging and splitting of nanoliter water droplets actuated by electrowetting in digital microfluidic devices. In a first step, numerical and analytical predictions for the droplet transport velocity are compared and very good agreement is obtained for a wide range of contact angles. The same algorithm is employed then to study the dynamics of the splitting processes at different contact angles and different geometries of the cell. The configuration of the liquid droplet involved in a splitting process and the dependence of the splitting time on the transport velocity are also investigated and phenomenological laws describing these processes are also proposed.  相似文献   

5.
This paper reports the experimental results on kinematics and deformation of ferrofluid droplets driven by planar coils. Ferrofluid droplets act as liquid magnets, which can be controlled and manipulated by an external magnetic field. In our experiments, the magnetic field was generated by two pairs of planar coils, which were fabricated on a double-sided printed circuit board. The first pair of coils constrains the ferrofluid droplet to a one-dimensional motion. The second pair generates the magnetic gradient needed for the droplet motion. The direction of the motion can be controlled by changing the sign of the gradient or of the driving current. Kinematic characteristics of the droplet such as the velocity–position diagram and the aspect ratio of the droplet are investigated. The analysis and discussion are based on the different parameters such as the droplet size, the viscosity of the surrounding medium, and the driving current. This simple actuation concept would allow the implementation of lab-on-a-chip platforms based on ferrofluid droplets.  相似文献   

6.
We present an integrated droplet-on-demand microfluidic platform for dispensing, mixing, incubating, extracting and analyzing by mass spectrometry pico- to nanoliter-sized droplets. All of the functional components are successfully integrated for the first time into a monolithic microdevice. Droplet generation is accomplished using computer-controlled pneumatic valves. Controlled actuation of valves for different aqueous streams enables accurate dosing and rapid mixing of reagents within droplets in either the droplet generation area or in a region of widening channel cross-section. Following incubation, which takes place as droplets travel in the oil stream, the droplet contents are extracted to an aqueous channel for subsequent ionization at an integrated nanoelectrospray emitter. Using the integrated platform, rapid enzymatic digestions of a model protein were carried out in droplets and detected online by nanoelectrospray ionization mass spectrometry.  相似文献   

7.
In this paper, we present a digital microfluidic droplet sorting platform to achieve automated droplet sorting based on fluorescent detection. We design and fabricate a kind of digital microfluidic chip for manipulating nano-liter-sized liquid droplets, and the chip is integrated with a fluorescence-initiated feedback system for real-time sorting control. The driving and sorting characteristics of fluorescent droplets encapsulating fluorescent-labeled particles are studied on this platform. The droplets dispensed from on-chip reservoir electrode are transported to a fluorescence detection site and sorted according to their fluorescence signals. The fluorescent droplets and non-fluorescent droplets are successfully separated and the number of fluorescent particles inside each droplet is quantified by its fluorescent intensity. We realize droplet sorting at 20 Hz and obtain a linear relationship between the fluorescent particle concentrations and the fluorescence signals. This work is easily adapted for sorting out fluorescent-labeled microparticles, cells and bacteria and thus has the potential of quantifying catalytic or regulatory bio-activities.  相似文献   

8.
We present free-floating amphiphilic picoliter microcarriers for multiplexed loading in a microfluidic device. The amphiphilic microcarrier is composed of encoded hydrophobic hexagonal outer structure and hydrophilic inner structure. We fabricate these free-floating droplet carriers and assemble them in a microfluidic device for a demonstration of multiplexed liquid loading. Picoliter loading is performed by serial solution exchange of aqueous and oil phase solution. We are able to precisely adjust the loaded volume by varying the diameter and depth of the microcarrier. We also fabricate arbitrary shaped microwells and load picoliter droplets into?them. A microbead suspension is also used to demonstrate mixing via continuous oil flow. Further development of this work may be applicable to high-throughput multiplexed assays using quantized liquid loading in a microfluidic environment.  相似文献   

9.
A valve-based microfluidic micromixer was developed for multiply component droplets generation, manipulation and active mixing. By integrating pneumatic valves in microfluidic device, droplets could be individually generated, merged and well mixed automatically. Moreover, droplet volume could be controlled precisely by tuning loading pressure or the flow rate of the oil phase, and certain droplets fusion conditions were also investigated by adjusting the droplet driving times and oil flow rates. In these optimized conditions, fluorescence enhancement of droplets was used to detect Hg (II) ions in droplet by mixing with probe droplets (Rhodamine B quenched by gold nanoparticle). This method would have powerful potential for tiny volume sample assay or real-time chemical reaction study.  相似文献   

10.
EWOD microfluidic systems for biomedical applications   总被引:1,自引:0,他引:1  
As the technology advances, a growing number of biomedical microelectromechanical systems (bio-MEMS) research involves development of lab-on-a-chip devices and micrototal analysis systems. For example, a portable instrument capable of biomedical analyses (e.g., blood sample analysis) and immediate recording, whether the patients are in the hospital or home, would be a considerable benefit to human health with an excellent commercial viability. Digital microfluidic (DMF) system based on the electrowetting-on-dielectric (EWOD) mechanism is an especially promising candidate for such point-of-care systems. The EWOD-based DMF system processes droplets in a thin space or on an open surface, unlike the usual microfluidic systems that process liquids by pumping them in microchannels. Droplets can be generated and manipulated on EWOD chip only with electric signals without the use of pumps or valves, simplifying the chip fabrication and the system construction. Microfluidic operations by EWOD actuation feature precise droplet actuation, less contamination risk, reduced reagents volume, better reagents mixing efficiency, shorter reaction time, and flexibility for integration with other elements. In addition, the simplicity and portability make the EWOD-based DMF system widely popular in biomedical or chemical fields as a powerful sample preparation platform. Many chemical and biomedical researches, such as DNA assays, proteomics, cell assays, and immunoassays, have been reported using the technology. In this paper, we have reviewed the recent developments and studies of EWOD-based DMF systems for biomedical applications published mostly during the last 5 years.  相似文献   

11.
Electrowetting refers to an electrostatically induced reduction in the contact angle of an electrically conductive liquid droplet on a surface. Most designs ground the droplet by either sandwiching the droplet with a grounding plate on top or by inserting a wire into the droplet. Washizu and others have developed systems capable of generating droplet motion without a top plate while allowing the droplet potential to float. In contrast to these designs, we demonstrate an electrowetting system in which the droplet can be electrically grounded from below using thin conductive lines on top of the dielectric layer. This alternative method of electrically grounding the droplet, which we refer to as grounding-from-below, enables more robust droplet translation without requiring a top plate or wire. We present a concise electrical-energy analysis that accurately describes the distinction between grounded and non-grounded designs, the improvements in droplet motion, and the simplified control strategy associated with grounding-from-below designs. Electrowetting on a single planar surface offers flexibility for interfacing to liquid-handling instruments, utilizing droplet inertial dynamics to achieve enhanced mixing of two droplets upon coalescence, and increasing droplet translation speeds. In this paper, we present experimental results and a number of design issues associated with the grounding-from-below approach.  相似文献   

12.
In this paper, we describe a method for encapsulation of biomaterials in hydrogel beads using a microfluidic droplet-merging channel. We devised a double T-junction in a microfluidic channel for alternate injection of aqueous fluids inside a droplet unit carried within immiscible oil. With this device, hydrogel beads with diameter <100 μm are produced, and various solutions containing cells, proteins and reagents for gelation could merge with the gel droplets with high efficiency in the broad range of flow rates. Mixing of reagents and reactions inside the hydrogel beads are continuously observed in a microchannel through a microscope. By enabling serial injection of each liquid with the dispersed gel droplets after they are produced from the oil-focusing channel, the device simplifies the sample preparation process, and gel-bead fabrication can be coupled with further assay continuously in a single channel. Instantaneous reactions of enzyme inside hydrogel and in-situ formation of cell-containing beads with high viability are demonstrated in this report.  相似文献   

13.
Two electrical mechanisms for manipulating particles and fluids, dielectrophoresis (DEP) and liquid dielectrophoresis (LDEP), are integrated in a microfluidic chip for creating the single-particle environment. The fluid is activated by LDEP with a 100-kHz/240-Vpp signal. When the single polystyrene bead approaches the trapping area, positive DEP force is utilized to capture and immobilize the bead. After trapping the bead, the process of liquid cutting and droplet creation is employed to create a droplet containing a single bead by LDEP with a 100-kHz/320-Vpp signal.  相似文献   

14.
We demonstrate a 3-D crossing microstructure that has simple and versatile features for the fission and fusion of droplets. For their fission, the size of daughter droplets is readily controllable solely on modulating the ratio of flow rates at the inlets. We observed two distinct scenarios of droplet fission and propose dripping-like and squeezing-like mechanisms to explain such anomalous phenomena. Depending on the width of the outlet channel, the microstructure exhibits chronologically differentiated dynamics of droplet fusion and fission, leading to diverse droplet mixing. With this microstructure, droplets of diverse size and concentration can be accordingly produced from two individual droplets of distinct constituents. As the 3-D structure allows for both droplet dispersion and mixing, it is beneficially applicable for biochemical and biomedical applications such as drug dosing and drug delivery. Diverse droplet manipulations are realized with this 3-D crossing microstructure, shedding new light on droplet-based microfluidic systems.  相似文献   

15.
We demonstrate effective mixing of microliter droplets using electrically tunable superhydrophobic nanostructured surfaces. By applying electrical voltage and current, droplets can be reversibly switched from a wetting to a non-wetting state, which induces fluid motion within the droplet. This mixing concept was verified using a DNA hybridization assay, in which a single droplet reversibility accelerated the hybridization reaction by an order of magnitude as compared to mixing by passive diffusion. This work offers a new method to effectively mix droplets for a variety of microfluidics applications.  相似文献   

16.
Droplet-based microfluidic allows high throughput experimentation in with low volume droplets. Essential fluidic process steps are on the one hand the proper control of the droplet composition and on the other hand the droplet processing, manipulation and storage. Beside integrated fluidic chips, standard PTFE-tubings and fluid connectors can be used in combination with appropriate pumps to realize almost all necessary fluidic processes. The segmented flow technique usually operates with droplets of about 100–500 nL volume. These droplets are embedded in an immiscible fluid and confined by channel walls. For the integration of segmented flow applications in established research workflows—which are usually base on microtiter plates—robotic interface tools for parallel/serial and serial/parallel transfer operations are necessary. Especially dose–response experiments are well suited for the segmented flow technique. We developed different transfer tools including an automated “gradient take-up tool” for the generation of segment sequences with gradually changing composition of the individual droplets. The general working principles are introduced and the fluidic characterizations are given. As exemplary application for a dose–response experiment the inhibitory effect of antibiotic tetracycline on Escherichia coli bacteria cultivated inside nanoliter droplets was investigated.  相似文献   

17.
Droplet-Based Microreactions With Oil Encapsulation   总被引:2,自引:0,他引:2  
This paper reports a microreaction technology for biochemical assay using nanoliter droplets encapsulated inside oil droplets. Microreaction chambers are constructed on a glass substrate by accumulating oil droplets that are dispensed by a directional droplet ejector. Droplets of different aqueous reagents are then directionally ejected (by other directional droplet ejector adjacent to the oil droplet ejector) into the oil microchambers for parallel and combinatory analysis. Because the reagents are encapsulated in oil, the evaporation rate is reduced by several orders of magnitude, and only small amounts of reagents are required for each assay. The microchamber size and the reagent amount are digitally controlled by the number of ejected oil and reagent droplets, respectively. The ejectors for oil and reagents have been integrated on a single chip so that each assay is performed efficiently without any mechanical movement and alignment. We have carried out both physical and chemical microreactions with this method and observed a negligible difference in response from conventional macroreactions.  相似文献   

18.
Mehrnezhad  Ali  Kwak  Tae Joon  Kim  Sunkook  Chang  Woo-Jin  Park  Kidong 《Microsystem Technologies》2019,25(9):3417-3423

Droplet microfluidics have a great potential in chemical and biomedical applications, due to their high throughput, versatility, and massive parallelism. To enhance their throughput, many devices based on the droplet microfluidics are using a flow-through configuration, in which the droplets are generated, transported, and analyzed in a continuous stream with a high velocity. Direct imaging of moving droplets is often necessary to characterize the spatiotemporal dynamics of the chemical reaction and physical process in the droplets. However, due to the motion blur caused by the movement of the droplets during exposure, an expensive high-speed camera is required for clear imaging, which is cost prohibitive in many applications. In this paper, we are presenting ‘Moving shot’ to demonstrate direct imaging of fast-moving droplets in microfluidic channels at an affordable cost. A microfluidic device is translated at the same velocity but in the opposite direction of moving droplets in it, so that the droplets are stationary with respect to the objective lens. With this approach, we can image fluorescent droplets moving at 0.34 cm s−1 with an exposure time up to 2 s without motion blur. We strongly believe that the proposed technique can enable cost-effective and high-throughput imaging of fast-moving droplets in a microfluidic channel.

  相似文献   

19.
Rapid and uniform reagent distribution is critical to the performance of a high-throughput microfluidic system, and its geometric design of the microchannels dominates the accuracy and distribution uniformity of the daughter droplets. This research’s purpose is to optimize the geometry of the T-junction to achieve a uniform distribution of two daughter droplets from a single liquid droplet. Models of gas–liquid flow were realized in the transient numerical simulations to investigate the geometry-dependent pressure distributions and the flowing velocities inside the droplet during the splitting process that leads to an improved design of the T-junction that can increase the stability of the droplet splitting process. To validate that increasing the stability of the splitting process can help improve the distribution uniformity of the daughter droplets, microfluidic devices were manufactured on poly(methyl methacrylate) substrates with micromilling and thermal bonding for experiments. In the multiple experiments, 2 μl of reagent was loaded into the microfluidic device and a uniform pneumatic pressure was applied to push the droplet into the T-junction for splitting. The experimental results, after statistical analysis, show that the improved T-junction can achieve better distribution uniformity of the daughter droplets with a higher reliability and a less reagent loss during the splitting process.  相似文献   

20.
We experimentally examine the dynamics of droplet assembly and recombination processes in a two-dimensional pore-model system. Monodisperse trains of droplets are formed by focusing streams of immiscible fluids into a square microchannel that is connected to a diverging/converging slit microfluidic chamber. We focus on the limit of dilute emulsions and investigate the formation and stability of crystal-like structures when droplets are hydrodynamically coupled in the chamber. The minimal distance between droplets and the spread of droplet lattices are measured as a function of initial control parameters and the relationship between droplet velocity and trajectory is discussed. We demonstrate that the onset of coalescence depends on both the capillary number based on the viscosity of the external phase and the droplet concentration. The draining time of the thin film between droplets in apparent contact is found to depend on fluid characteristics. Such property allows us to examine the crossover between non-coalescing and coalescing droplet microflows by varying the residence time of the dispersion in the microfluidic chamber. This work characterizes droplet interaction and coalescence phenomena during multiphase transport in a simple extensional microgeometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号