首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: Varicella pneumonia that results in respiratory failure or progresses to the institution of mechanical ventilation carries a significant morbidity and mortality despite intensive respiratory support and antiviral therapy. There has been no reported study of the role of corticosteroids in life-threatening varicella pneumonia. DESIGN AND METHODS: This was an uncontrolled retrospective and prospective study of all adult patients with a diagnosis of varicella pneumonia who were admitted to the ICUs of the Johannesburg group of academic hospitals in South Africa between 1980 and 1996. Patient demographics, clinical and laboratory features, necessity for mechanical ventilation, and complications were reviewed. The outcome and therapy of varicella pneumonia was evaluated with particular reference to the use of corticosteroids. Patients with comorbid disease and those already taking immunosuppressive agents were excluded. Key endpoints included length of ICU and hospital stay and mortality. MEASUREMENTS AND RESULTS: Fifteen adult patients were evaluated, six of whom received corticosteroids in addition to antiviral and supportive therapy. These six patients demonstrated a clinically significant therapeutic response. They had significantly shorter hospital (median difference, 10 days; p<0.006) and ICU (median difference, 8 days; p=0.008) stays and there was no mortality, despite the fact that they were admitted to the ICU with significantly lower median ratios between PaO2 and fraction of inspired oxygen than those patients (n=9) who did not receive corticosteroid therapy (86.5 vs 129.5; p=0.045). CONCLUSION: When used in addition to appropriate supportive care and early institution of antiviral therapy, corticosteroids appear to be of value in the treatment of previously well patients with life-threatening varicella pneumonia. The observations presented in this study are important and should form the basis for a randomized controlled trial, as no other relevant studies or guidelines are available.  相似文献   

2.
3.
We have used gene targeting to create a mouse model of glycogen storage disease type II, a disease in which distinct clinical phenotypes present at different ages. As in the severe human infantile disease (Pompe Syndrome), mice homozygous for disruption of the acid alpha-glucosidase gene (6(neo)/6(neo)) lack enzyme activity and begin to accumulate glycogen in cardiac and skeletal muscle lysosomes by 3 weeks of age, with a progressive increase thereafter. By 3.5 weeks of age, these mice have markedly reduced mobility and strength. They grow normally, however, reach adulthood, remain fertile, and, as in the human adult disease, older mice accumulate glycogen in the diaphragm. By 8-9 months of age animals develop obvious muscle wasting and a weak, waddling gait. This model, therefore, recapitulates critical features of both the infantile and the adult forms of the disease at a pace suitable for the evaluation of enzyme or gene replacement. In contrast, in a second model, mutant mice with deletion of exon 6 (Delta6/Delta6), like the recently published acid alpha-glucosidase knockout with disruption of exon 13 (Bijvoet, A. G., van de Kamp, E. H., Kroos, M., Ding, J. H., Yang, B. Z., Visser, P., Bakker, C. E., Verbeet, M. P., Oostra, B. A., Reuser, A. J. J., and van der Ploeg, A. T. (1998) Hum. Mol. Genet. 7, 53-62), have unimpaired strength and mobility (up to 6.5 months of age) despite indistinguishable biochemical and pathological changes. The genetic background of the mouse strains appears to contribute to the differences among the three models.  相似文献   

4.
Microsatellite instability of DNA samples of 79 sporadic colon cancer patients were analyzed. These samples were also screened to search mutations in the repeat sequences in the gene for the type II receptor of transforming growth factor-beta (TGF-beta RII) using polymerase chain reaction (PCR), electrophoresis with urea gel, and PCR-single strand conformation polymorphism (PCR-SSCP) method. The incidence of microsatellite instability, defined as severe replication error phenotype (RER) with microsatellite alterations in more than three loci, was 6%. Deletion and insertion of an A residue in the (A)10 region, which cause frameshift mutation, were found in four samples and their incidence in the samples with microsatellite instability was 80%. A novel nucleotide substitution of T for G at 1918, which causes missense mutation of arginine to leucine at codon 528, was found in a sample with microsatellite instability. The mutation at 1918 was in highly conservative amino acid residue.  相似文献   

5.
Antibodies to glutamic acid decarboxylase-65 (GAD65) are present in a number of autoimmune disorders, such as insulin-dependent (type 1) diabetes mellitus (IDDM), stiff man syndrome, and polyendocrine autoimmune disease. Antibodies to GAD in IDDM patients usually recognize conformation-dependent regions on GAD65 and rarely bind to the second isoform, glutamic acid decarboxylase-67 (GAD67). In contrast, those present in stiff man syndrome and polyendocrine disease commonly target the second isoform (GAD67) and include antibodies that are less dependent on the conformation of the molecule. By immortalizing peripheral blood B cells with Epstein-Barr virus, we have generated three human IgG autoantibodies, termed b35, b78, and b96, to GAD65 from one patient with multiple autoantibodies to endocrine organs and Graves' disease. All three autoantibodies are of the IgG1 isotype, with islet cell activity, and do not react with GAD67. The regions on GAD65 recognized by the three autoantibodies have been investigated by immunoprecipitation with a series of chimeras, by binding to denatured and reduced antigens, and using protein footprinting techniques. Using chimeric GAD proteins, we have shown that b35 targets the IDDM-E1 region of GAD65 (amino acids 240-435) whereas both b78 and b96 target the IDDM-E2 region of GAD65 (amino acids 451-570). Furthermore, examination of binding to recombinant GAD65 and GAD67 by Western blotting revealed some differences in epitope recognition, where only b78 bound denatured and reduced GAD65. However, b35, b78, and b96 autoantibodies had different footprinting patterns after trypsin treatment of immune complexes with GAD65, again indicating different epitope recognition. Our results indicate that antibodies to GAD65 present in nondiabetic patients with multiple autoantibodies to endocrine organs show similarities to those in IDDM (by targeting IDDM-E1 and IDDM-E2 regions of GAD65) as well as subtle differences in epitope recognition (such as binding to denatured and reduced GAD65 and by protein footprinting). Thus, the GAD65 epitopes recognized by autoantibodies in different autoimmune diseases may overlap and be more heterogeneous than previously recognized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号