共查询到17条相似文献,搜索用时 78 毫秒
1.
基于气象因素的PM2.5质量浓度预测模型 总被引:1,自引:0,他引:1
为得出拟合效果最佳的预测模型,建立了多元回归和机器学习预测模型对PM2.5质量浓度进行预测。在输入气象因素的基础上,引入污染物质量浓度基础值和周期因素两类变量作为预测输入,并对4种预测模型进行对比研究。研究结果表明:对预测输入进行改进后,多元线性回归预测模型拟合优度由0.52提高至0.64,所选取的气象参数、污染物质量浓度基础值和周期因素能较好地描述PM2.5质量浓度的日变化情况;与多元线性回归预测模型相比,BP神经网络和支持向量机两种预测模型能较好地捕捉PM2.5质量浓度与预测输入之间的非线性影响规律,整体拟合优度分别达0.69和0.74,预测准确度较高;支持向量机预测模型可作为PM2.5质量浓度预测的首选方法。 相似文献
2.
多元线性回归与BP神经网络预测模型对比与运用研究 总被引:2,自引:0,他引:2
对多元线性回归模型及BP神经网络模型的理论及运用方法进行研究,采用SPSS及MATLAB软件分别建立多元性回归和BP神经网络预测模型,通过农村居民纯收入预测的算例,对多元线性回p-3和BP神经网络预测模型的拟合优度、初始数据的仿真与模拟能力和新数据的预测能力进行对比,数据结果表明BP神经网络预测模型优于多元线性回归预测模型. 相似文献
3.
基于支持向量机方法的短时交通流量预测方法 总被引:11,自引:4,他引:11
在总结已有多种预测模型的基础上,充分考虑了交通本身所存在的非线性、复杂性和不确定性,提出了一种基于支持向量机的短时交通流量预测模型。实例数据验证结果和基于BP神经网络的预测模型的对比结果表明,该模型在精度、收敛时间、泛化能力、最优性等方面均优于基于BP神经网络的预测模型。 相似文献
4.
本文通过对BP神经网络和影响交通流量因素的分析,采用Windrow-Hoff学习算法、Kolmogorov定理和trainlm训练方法,实现对长春市开运街和湖西路路段动态交通流量的预测. 相似文献
5.
6.
7.
改进的LS-SVM算法及在交通流量预测上的应用 总被引:1,自引:0,他引:1
对标准的LS-SVM算法进行了改进,得到一种新的学习算法.这种新的学习算法不仅能减少计算的复杂性,提高学习速度;同时能提高函数估计的精确度.将改进的LS-SVM算法应用于交通流量的预测,同时与传统的多元线性回归及支持向量机方法进行比较,结果表明改进的LS-SVM方法具有较高的预测精度,且实验取得了较好效果. 相似文献
8.
风速对风电场功率输出起着十分重要的作用,但由于风速具有很强的随机性,使得对其预测的精度不高。针对上述问题,以双支持向量回归机为主要工具,结合风电场的实测风速数据建立了风速预测模型;给出了模型的特征以及相关参数的,并与标准支持向量回归机的预测结果进行了比较。实验结果表明:双支持向量回归机在预测精度上优于标准支持向量回归机,为风电场的风速预测提供了参考。 相似文献
9.
交通堵塞是制约城市经济发展的重要因素之一,如何解决使其畅通无阻是目前我国各大城市面临的一个难题.本文运用先进的理论技术,从不同的角度提出了几种进行交通流量预测的方法,如人工智能中的神经网络,面向对象等.可以及时、有效地对交通流量进行合理预测.为解决交通堵塞问题提供参考依据,最终达到规避拥堵,实现车流畅通的目的. 相似文献
10.
和声搜索最小二乘支持向量机预测模型及其应用 总被引:3,自引:0,他引:3
为了改进目前最小二乘支持向量机(LSSVM)参数选择的盲目性,将和声搜索(Harmony Search)算法引入到最小二乘支持向量机中来.利用具有全局优化功能的和声搜索算法对LSSVM中正则化参数γ和核函数参数σ的进行自动优选,提出了和声搜索最小二乘支持向量机(Harmony Search Least Squares Support Vector Machine,HS-LSSVM)算法.通过对丰满大坝位移的建模预测并和BP神经网络模型及传统统计回归模型的分析比较,表明HS-LSSVM模型具有更小的预测误差和更高的预测精度. 相似文献
11.
高速公路动态交通流支持向量机预测模型 总被引:1,自引:0,他引:1
为了提高高速公路的交通运行效率,需要实时预测各路段交通流参数状况,通过对高速公路宏观动态交通流模型的分析,以及对SMO支持向量机参数选择的研究,提出了高速公路动态交通流支持向量机预测模型.以西安-宝鸡高速公路交通流信息采集数据对模型进行训练、测试和仿真,预测平均相对误差小于3.84%,表明了模型的有效性. 相似文献
12.
基于K-均值聚类算法RBF神经网络交通流预测 总被引:1,自引:0,他引:1
针对目前道路拥堵等交通问题,本文采用K-均值聚类算法对径向基函数(radial basis function,RBF)网络进行优化,通过K-均值聚类算法把所有的输入样本进行统一聚类,求得所有隐含层节点的RBF中心值Ci,并用最小二乘法(LMS)进行RBF网络的权值调整,同时在一定的时间和路段内对车流量进行数据采集,通过建立RBF神经网络模型,运用Matlab软件把采集的数据、图像进行计算机仿真,仿真结果表明,未加入K-均值聚类的RBF神经网络,其预测输出曲线大致可以和实际输出曲线拟合,但在数据波动较大的时刻,预测曲线的收敛速度偏慢且效率偏低;而采用K-均值聚类算法的RBF神经网络,在实际输出波动较大时,预测输出的曲线收敛速度和准确度都较高,因此,本研究相对于普通的BP神经网络,有更高的预测精度和较好的收敛性。该研究适用于市区内的交通流预测。 相似文献
13.
为解决我国大城市工作上下班高峰期公交线路客流不均衡的问题,提出以公交路线一卡通数据为研究对象,综合考虑天气类型、温度和风力多个因素对客流的影响,利用多元线性回归模型建立公交工作日高峰期各时间段客流模型. 最后通过一卡通大数据对模型进行了验证,证明多元线性回归模型能够准确且快速地预测高峰时间段的客流量,实现了通过公交线路客流预测缓解城市工作日高峰期出行拥堵的问题. 相似文献
14.
提出了一种基于支持向量机(SVM)的并行式时空二维融合路段交通量预测方法,对时间SVM和空间SVM分别在两个并行的操作系统模型中进行,以此降低时间成本.并将时间维SVM预测、空间维SVM预测与基于SVM的数据时空二维线性融合预测结果进行了对比,通过对比表明,时空二维线性融合预测的误差很明显比其它两种方法预测的结果误差要小得多,因此本文提出的时空二维融合可大大的提高预测精度.尤其是当有突发因素(如:交通事故发生)时,本文所提出的方法可在很大程度上避免一维时间源数据融合的结构性系统误差. 相似文献
15.
逐步回归法在无检测器交叉口交通流量预测中的应用 总被引:4,自引:1,他引:4
在研究交叉口相关性的基础上 ,利用逐步回归法预测无检测器交叉口交通流量 ,并应用长春市路网的实际数据对结果进行了检验 ,取得了满意的效果。此研究成果有效地解决了无检测器交叉口交通流量的预测问题 ,它使得只有很少检测器交叉口的城市的交通流诱导成为可能 ,并为交叉口的宏观管理提供了理论依据。 相似文献
16.
针对交通流量特性和外部因素对交通流量预测结果的影响,提出了一种对城市短时交通流量预测的模型CNN-ResNet-LSTM,将卷积神经网络(CNN)、残差神经单元(ResNet)和长短期记忆循环神经网络(LSTM)集成到一个端到端的网络框架.利用卷积神经网络来捕获城市区域间交通流量的局部空间特征,并在卷积神经网络中加入多个残差神经单元来加深网络深度,可提高预测的准确性;利用长短期记忆循环神经网络来捕获交通流量数据的时间特征;利用相应的权重将2个网络的输出结果融合,得到通过轨迹数据预测的结果;最后与外部因素融合,得到城市区域的交通流量预测值.用北京市轨迹交通数据对该模型进行验证,CNN-ResNet-LSTM模型不仅在准确率方面比传统模型高,而且在保证预测准确率的情况下,模型使用的参数也少. 相似文献
17.
改进的基于支持向量机的网络综合评价策略 总被引:5,自引:1,他引:5
针对现有移动网络性能综合评估方法中存在的问题,提出了在维度变换基础上的采用支持向量机的综合评价策略。首先对语义上相关的n个指标进行维度变换使之成为独立的n维,然后对变换后的数据用支持向量机建立回归模型。理论分析表明,这种方法既可克服反向传播(BP)神经网络方法在应用中存在的收敛于局部极小问题,也可避免主成分分析法引起的信息丢失问题。实验表明,用支持向量机的方法比用BP神经网络的方法过程更可控,预测误差更小,且样本评价值间的差异保持得更好。 相似文献