首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文在金属元素和组成固定的条件下,利用正交实验研究了催化剂的制备条件(沉淀温度A、老化平衡时间B、干燥温度C、加料方式D)对大豆油加氢催化剂活性与选择性的影响,发现影响催化剂活性的顺序是D>A>B>C,影响亚麻酸选择性指数SⅡ的顺序是A>B>D>C,亚油酸选择性指数SⅠ的顺序是B>A>C>D,其最佳制备条件是沉淀温度70℃,老化平衡时间40min,干燥温度105℃,加料方式为并加法.并利用线性回归方法建立了大豆油氢化时亚麻酸与亚油酸的选择性指数SⅡ和SⅠ与主要制备条件(A/K、B/min 、C/K)之间的关系,即 SⅡ=-2.6386+0.0104A+0.0055B+0.003133C SⅠ=0.1607+0.0008A+0.00189B+0.0053C  相似文献   

2.
本文在金属元素和组成固定的条件下,利用正交实验研究了催化剂的制备条件对大豆油加氢催化剂活性与选择的影响,发现影响催化活剂性的顺序是D〉A〉B〉C,影响亚麻酸选择性指数SⅡ的顺序是A〉B〉D〉C亚油酸选择性指数SⅠ的顺离是B〉A〉C〉D,共最佳制备条件是沉淀温度70℃,老化平衡时间40min,干燥温度105℃,加料方式为并加法。并利用线性回归方法建立了大豆油氢化时亚麻酸与亚油酸的选择指数SⅡ和SⅠ与  相似文献   

3.
在金属元素和组成固定的条件下,研究了催化剂的制备条件对催化剂活性与选择性的影响,并建立了大豆油氢化时亚麻酸与亚油酸的选择性指数SⅡ和SⅠ与制备条件之间的关系。  相似文献   

4.
由文献[1,2]提供的催化剂,对氢化工艺条件进行了研究,找出了大豆油氢化时亚麻酸与亚油酸选择指数SⅡ物SⅠ与氢化工艺条件(氢化温度、氢气压力、催化剂浓度等)之间关系。  相似文献   

5.
高环氧值环氧大豆油制备工艺的研究   总被引:3,自引:1,他引:2  
研究了用一种新型催化剂制备环氧值大于6.8%的环氧大豆油的新方法,考察了加料方式、反应时间、反应温度、双氧水用量、催化剂用量对环氧值的影响,确定了环氧大豆油的最佳制备条件:采用逐步加料,按m(大豆油):m(20%双氧水):m(催化剂)=100:(85~100):(0.5~1)的比例加料。反应时间9h,反应温度55℃。  相似文献   

6.
《中国食品添加剂》2019,(9):100-105
以优质葵花油为原料,采用无毒无公害的1,2-丙二醇为溶剂,用碱异构化法制备共轭亚油酸。实验研究了加碱量、反应温度、反应时间、溶剂用量对共轭亚油酸转化率的影响,采用正交试验法得出其最佳实验条件。结果表明,各因素对共轭亚油酸转化率影响大小的顺序依次为:反应温度(B)加碱量(A)溶剂量(D)反应时间(C),即油碱比为1.6,反应温度为180℃,反应时间为2h,溶油比为2时,葵花由碱异构化法制备共轭亚油酸的转化率最高,可达到94.65%。  相似文献   

7.
以多孔二氧化硅为载体制备了铜基纳米催化剂。以废弃油脂制得生物柴油的氢化反应为探针,采用单因素实验考察了制备方法、铜负载量、焙烧温度及还原温度对催化剂活性和选择性的影响。结果表明:采用吸附水解法,铜负载量12%,350℃焙烧,270℃还原,该条件下制得的催化剂活性高、选择性好;在催化剂添加量2%、180℃、0.8 MPa条件下反应2 h,亚麻酸甲酯可以完全被消除,亚油酸甲酯含量从34.40%减少到9%以下,油酸甲酯含量达到62%左右,硬脂酸甲酯没有增加。通过添加少量的镍助剂进一步提高了催化剂活性。  相似文献   

8.
采用Lipozyme RM IM脂肪酶为催化剂,在无溶剂体系中,催化大豆油和辛酸(C8∶0)、癸酸(C10∶0)进行酯交换反应制备MLM型结构脂.辛酸、癸酸单独与大豆油反应时,癸酸在产品中的含量比辛酸高并且反应速率快;辛酸、癸酸混合与大豆油反应同其分别单独与大豆油反应没有区别,因此选择辛酸、癸酸混合与大豆油进行酯交换反应.在目标产品(27% C8∶0和10% C10∶0)的基础上,探讨了辛酸与癸酸摩尔比、底物摩尔比(酸与大豆油摩尔比)、反应温度及Lipozyme RM IM添加量(基于底物总质量)对酯交换产品中辛酸、癸酸含量的影响,同时对脂肪酶可重复利用次数进行了考察.得到的最佳反应条件为:辛酸与癸酸摩尔比4∶1,底物摩尔比6∶1,反应温度55℃,Lipozyme RM IM添加量7%;在此条件下达到目标产品要求的反应时间仅需4h.在最佳反应条件下,利用该酶反应了12批次(每批次为24 h)后,结果仍可达到目标产品的要求.  相似文献   

9.
利用甘油和高温焙烧(900℃)废弃鸡蛋壳制得的氧化钙制备了固体碱催化剂甘油钙,研究了甘油钙在大豆油与甲醇的酯交换反应制备生物柴油中的催化性能,考察了催化剂的焙烧温度、甲醇与大豆油物质的量比、催化剂用量、反应时间对生物柴油收率的影响.经元素分析仪分析结果确定催化剂为二甘油钙(Ca(C3H7O3)2).在催化剂焙烧温度为250℃、催化剂用量为大豆油质量的5%、甲醇与大豆油物质的量比为8∶1、反应时间为5h的条件下,生物柴油收率在86%以上.  相似文献   

10.
SnO2-Al2O3固体酸催化大豆油酯交换制备生物柴油   总被引:1,自引:0,他引:1  
采用共沉淀法制备SnO2-Al2O3复合固体酸催化剂,用于催化大豆油甲醇解反应,考察催化剂制备条件和酯交换反应条件对大豆油转化率影响。研究结果表明,催化剂最佳制备条件为Sn/A1摩尔比3:1,煅烧温度为923K;催化大豆油酯交换反应醇油摩尔比30:1,催化剂用量3wt.%,反应时间5h,反应温度200℃,此时大豆油转化率最高,为75.05%。当向酯交换反应体系加入一定量游离脂肪酸或水分时,SnO2-Al2O3催化剂催化活性几乎不受影响,且还能同时催化酯化反应;结果还表明,固体酸SnO2-Al2O3具有很好稳定性,可多次重复利用。  相似文献   

11.
通过ZrOCl2沉淀和H2SO4浸渍HMS介孔分子筛制备新型负载型固体超强酸催化剂(SO2-4-ZrO2-HMS),以H2O2和甲酸为氧化剂,以大豆油环氧化为探针反应,考察催化剂制备条件对催化性能影响.结果表明,制备SO2-4-ZrO2-HMS催化剂最佳条件是:ZrOCl2浓度为0.2 mol/L、H2SO4浓度为0.75 mol/L、焙烧温度为550℃;SO2-4-ZrO2-HMS催化剂对大豆油环氧化具有良好催化性能,环氧值达4.40、酸值达0.22,产品具有色泽优良、容易分离优点.  相似文献   

12.
以自制Ni-Ag/SBA-15为催化剂,在超临界CO_2条件下对氢化大豆油的工艺进行研究,其最佳工艺条件为CO_2压力8.0 MPa、氢气分压3.40 MPa、氢化温度100℃、催化剂用量0.20%、搅拌速率300 r/min、氢化时间90 min,产品碘值为86.0 g I_2/100 g,反式脂肪酸(trans fatty acids,TFAs)含量为11.7%;利用氢化动力学方程,运用MATLAB软件编辑运算程序,研究超临界CO_2氢化大豆油的反应速率与选择性,与常规状态下氢化进行比较,发现超临界CO_2状态氢化反应速率较快,且对亚麻酸及亚油酸有更好的氢化选择性。同时,在超临界CO_2条件下进行氢化,氢化大豆油产品中的TFAs和硬脂酸含量更低,分别为11.7%和9.4%。  相似文献   

13.
采用Pd/C作催化剂,以碘值为考察指标,在超临界CO2状态下对三级大豆油进行氢化制备润滑油基础油,确定最佳工艺条件为:催化剂用量0.06%,反应时间45 min,反应温度50℃,CO2压力5.5 MPa、加入氢气至总压力9 MPa,搅拌速度200r/min.在此条件下,所得氢化大豆油的碘值(Ⅰ)为88.20g/100g,黏度为9.89 Pa·s,过氧化值为5.6 mmol/kg,酸值(KOH)为0.68 mg/g.  相似文献   

14.
采用固体超强酸催化大豆油和大豆油脂肪酸与甘油酯化和酯交换制备单甘酯,通过二级分子蒸馏纯化单甘酯。通过响应面优化得到的最佳条件为:大豆油30.0 g,大豆油脂肪酸20.0 g,反应温度200℃,固体超强酸催化剂添加量0.26%(占大豆油和大豆油脂肪酸质量),甘油添加量12.66 g和反应时间4.81 h。在最佳条件下,反应得到的甘油酯混合物中,单甘酯含量达到69.82%。甘油酯混合物在Ⅰ级135℃分子蒸馏除去游离脂肪酸和甘油,在Ⅱ级185℃分子蒸馏蒸出单甘酯,得到产品中单甘酯含量为96.54%。  相似文献   

15.
为降低油脂氢化过程中反式脂肪酸的含量,本实验以自制的Pd/碳纳米管(Pd/carbon nanotubes,Pd/CNTs)为催化剂,在催化转移氢化体系中氢化大豆油,通过响应面试验以大豆油碘值为响应值摸索最优工艺条件,同时对催化转移氢化大豆油进行动力学分析。结果表明:最佳工艺条件为氢化温度84 ℃、催化剂添加量0.20%(以体系质量计)、甲酸铵供体浓度0.33 mol/50 mL、氢化时间90 min,产品的三烯酸、二烯酸和单烯酸反应速率常数分别为4.9×10-2、8.7×10-3和8.31×10-4,氢化亚麻酸和亚油酸的选择性高达5.63和10.47,氢化后大豆油碘值为95.3 g/100 g,反式脂肪酸相对含量仅为10.2%。采用催化转移氢化的方式进行油脂氢化,对制备低反式氢化油脂具有一定的研究意义和应用前景,也可为油脂氢化工业的发展提供一定的理论依据。  相似文献   

16.
以固体碱催化剂LiNO_3/ZrO_2催化大豆油甲醇解反应,探讨催化剂制备条件和反应条件对大豆油转化率影响。实验结果表明:LiNO_3/ZrO_2催化大豆油甲醇解最适制备条件和反应条件是:负载量3 mmol/g,煅烧温度923 K,醇油摩尔比12:1,催化剂用量6.0wt.%,反应时间5 h,最高转化率可达95.24%。  相似文献   

17.
桔梗中桔梗总皂苷和桔梗皂苷D的超声波提取工艺   总被引:1,自引:0,他引:1  
分别以水和甲醇为提取溶剂,研究超声波法提取桔梗中桔梗总皂苷和桔梗皂苷D的工艺条件。采用正交试验法,考察提取次数(A)、料液比(B)、提取时间(C)、超声功率(D)对桔梗总皂苷和桔梗皂苷D提取率的影响。以水为提取溶剂时,超声提取桔梗总皂苷的影响顺序:提取次数>超声功率>料液比>提取时间,最优组合A3B3C3D2;提取桔梗皂苷D的影响顺序:超声功率>料液比>提取次数>提取时间,最优组合A2B3C1D1。以甲醇为提取溶剂时,超声提取桔梗总皂苷的影响顺序:提取次数>超声功率>提取时间>料液比,最优组合A3B2C1D3;提取桔梗皂苷D的影响顺序:提取时间>提取次数>料液比>超声功率,最优组合A2B1C2D3。  相似文献   

18.
以棉籽油为原料,氧化铝载钌(Ru/AL2O3)为催化剂,对亚油酸异构化制备共轭亚油酸进行了研究。采用GC-MS分析不同温度、搅拌速率、催化剂添加量条件下产物中主要成分含量。通过判断反应前后棉籽油甘三酯Sn-1,2,3位脂肪酸组成的变化,评价金属钌催化剂的选择异构化催化特性。研究结果表明,165℃下Ru/AL2O3用量为棉籽油质量的2.5%,搅拌速率800 r/min, N2环境,反应36 h条件下,亚油酸转化率可达87.78 %,共轭亚油酸的选择性为57.17%,得到产物中共轭亚油酸含量为289.3 mg/g棉籽油。随反应时间,顺、反共轭亚油酸会向双反式共轭亚油酸转化,产物中的反式油酸含量有所增加,并且,Sn-1,3位的共轭亚油酸选择性异构化率高于Sn-2位。  相似文献   

19.
大豆油脂肪酸成分标准物质的研制   总被引:1,自引:0,他引:1  
对大豆油脂肪酸成分做了均匀性检验、稳定性监测和定值工作。结果表明,单元内和单元间均匀程度以及标准物质样品的稳定性均达到国家一级标准物质的制备要求。大豆油脂肪酸标准物质的定值结果为:棕榈酸(C16∶0)是11.0±0.8(%);硬脂酸(C18∶0)是4.5±0.4(%);油酸(C18∶1)是20.7±1.0(%);亚油酸(C18∶2)是54.2±2.4(%);亚麻酸(C18∶3)是8.9±1.8(%)。  相似文献   

20.
测定了乌桕梓油常规理化特性.采用柱层析、薄层层析和气相色谱法,研究了乌桕梓油中甘油酯种类及其脂肪酸组成.采用高温气相色谱/EI质谱联用仪直接分析了乌桕梓油中甘油酯结构.结果表明,乌桕梓油中性脂占98.79%,磷脂占0.22%,糖脂占0.99%.乌桕梓油中性脂的脂肪酸组成主要有C12:0、C14:0、C16:0、C17:0、C18:0、C18:1、C18:2和C18:3,磷脂中没有检出C12:0和C17:0,糖脂中则没有检出C17:0.乌桕梓油中甘油酯组成主要有月桂酸棕榈酸亚油酸甘油三酯、硬脂酸亚油酸亚麻甘油三酯、双棕榈酸亚油酸甘油三酯、棕榈酸亚油酸亚麻酸甘油三酯和双亚油酸亚麻酸甘油三酯等5种.最后,比较了无溶剂体系和叔丁醇体系中,以杂醇油为酰基受体,初步研究了脂肪酶法制备乌桕梓油生物柴油效果.结果表明,对于无溶剂体系和叔丁醇体系而言,当Novozym435与Lipozyme TLIM脂肪酶复合比例为2:4时,生物柴油转化率达到最高,分别为98.28%和76.33%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号