首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study we have shown that complement component C3 is expressed in the regenerating tissue during urodele limb regeneration. C3 was expressed in the dedifferentiated regeneration blastema and in the redifferentiated limb tissues in the axolotl, Amblystoma mexicanum, and in Notophthalmus viridescens. This expression was verified by immunofluorescent staining using an Ab against axolotl C3 and by in situ hybridization with an axolotl C3 cDNA probe. In the early stages of regeneration C3 appeared to be equally present in all mesenchymal cells and in the wound epithelium, whereas in the later stages it was mainly expressed in the differentiating muscle cells. Since no expression was seen in the developing limb, it appears that the C3 expression was specific to the regeneration process. We then demonstrated by hybridization experiments that a blastema cell line of myogenic origin expresses C3. All these findings implicate C3 in the dedifferentiation process and may indicate a new role for this molecule in muscle differentiation.  相似文献   

2.
Skeletal muscle has a remarkable capacity to regenerate after injury, although studies of muscle regeneration have heretofore been limited almost exclusively to limb musculature. Muscle precursor cells in skeletal muscle are responsible for the repair of damaged muscle. Heterogeneity exists in the growth and differentiation properties of muscle precursor cell (myoblast) populations throughout limb development but whether the muscle precursor cells differ among adult skeletal muscles is unknown. Such heterogeneity among myoblasts in the adult may give rise to skeletal muscles with different regenerative capacities. Here we compare the regenerative response of a masticatory muscle, the masseter, to that of limb muscles. After exogenous trauma (freeze or crush injuries), masseter muscle regenerated much less effectively than limb muscle. In limb muscle, normal architecture was restored 12 days after injury, whereas in masseter muscle, minimal regeneration occurred during the same time period. Indeed, at late time points, masseter muscles exhibited increased fibrous connective tissue in the region of damage, evidence of ineffective muscle regeneration. Similarly, in response to endogenous muscle injury due to a muscular dystrophy, widespread evidence of impaired regeneration was present in masseter muscle but not in limb muscle. To explore the cellular basis of these different regenerative capacities, we analyzed the myoblast populations of limb and masseter muscles both in vivo and in vitro. From in vivo analyses, the number of myoblasts in regenerating muscle was less in masseter compared with limb muscle. Assessment of population growth in vitro indicated that masseter myoblasts grow more slowly than limb myoblasts under identical conditions. We conclude that the impaired regeneration in masseter muscles is due to differences in the intrinsic myoblast populations compared to limb muscles.  相似文献   

3.
Local anesthetics, particularly bupivacaine, are known to be myotoxic to skeletal muscle. Injury is followed by satellite cell mediated regeneration. The eyelid is a common site for the injection of local anesthetics. Due to the complex anatomy of this region and the unique properties of facial musculature compared to limb skeletal muscle, the response of the orbicularis oculi to local injection of bupivacaine was examined to determine the time course of maximum satellite cell activation and division. The lower eyelids of rabbits were injected with two doses of a combination of bupivacaine and hyaluronidase, spaced 18 h apart. To assess the time course of satellite cell division, bromodeoxyuridine (BrdU) was injected immediately or, 1, 2, 3, 6 or 13 days after the second bupivacaine injury. The rabbits were sacrificed 24 h later. The eyelids were prepared for immunohistological examination and morphometric analysis of the presence of CD11-positive monocytes, neutrophils and macrophages, MyoD expression in satellite cells and/or myoblasts, and co-expression of BrdU and the developmental myosin heavy chain isoform. One day after bupivacaine injury of the orbicularis oculi, there was a large influx of CD11-positive cells which gradually decreased over time. Maximum activation of satellite cells, as defined by MyoD expression, occurred 2 and 3 days after the injury. Using double labeling techniques, the peak of BrdU incorporation occurred on day 3 and was identified in developmental myosin co-labeled cells 4 days after injury. The peak of satellite cell activation and division occurred 3 days after bupivacaine induced injury, as demonstrated by both MyoD expression and after pulse labeling with BrdU as identified in double labeled cells positive for BrdU and the developmental myosin heavy chain isoform. The process of regeneration in this muscle extended beyond the duration of this study. Muscle fibers remained small in cross-sectional area and positive for developmental myosin 2 weeks after injury, at a time when the fiber number had reached control, uninjured levels.  相似文献   

4.
Regeneration-competent urodele Amphibia are highly resistant to spontaneous development of neoplasms, in comparison with other vertebrates which do not exhibit great regenerative power. This observation implies that at least one growth parameter of urodele cells might be subject to different developmental mechanisms than the cells of animals incapable of epimorphic regeneration. Therefore, keeping records concerning the incidence of tumors in urodeles and investigating those exceptional cases might prove invaluable in understanding the basic biological principles governing organ regeneration and carcinogenesis, and might therefore help in cancer therapy. The present report depicts a case of two spontaneous, dermal, melanoma-like tumors found in an adult newt Triturus cristatus. Both tumors were located in the pelvic region. Histological examinations and tumor transplantations were conducted. It was found that the tumors were melanomata. When allografted within the body cavity, their mass was progressively eliminated.  相似文献   

5.
6.
It is generally known that the anuran stomach begins to express pepsinogens (Pg) during metamorphosis. To clarify the mechanisms of differentiation of Pg-producing cells, we examined immunohistochemically the epithelial transformation from larval to adult form in Xenopus laevis stomach at the cellular level. At the beginning of metamorphic climax, concomitantly with the modification of the basement membrane, apoptotic cells labelled by TUNEL suddenly increased in number in the entire epithelium except for the primordia of adult epithelial cells in the basal region of larval glands. Subsequently, with the development of connective tissue, the adult epithelial cells actively proliferated and replaced the larval cells from the basal to the luminal region. Following the start of morphogenesis of adult glands, Pg-producing cells became differentiated in newly formed adult glands, but not in the adult surface epithelium. We then developed an organ culture system and examined effects of thyroid hormone (TH) on the differentiation of Pg-producing cells in X. laevis stomach in vitro. In the presence of TH, just as in spontaneous metamorphosis, Pg-producing cells differentiated from the adult epithelial primordia after the apoptosis of larval epithelial cells. In contrast, in the absence of TH, neither apoptotic larval cells no Pg-producing cells were detected. Therefore, we conclude that TH triggers organ-autonomously the entire process leading to the differentiation of Pg-producing cells in X. laevis stomach. In addition, the strict localization of Pg-producing cells in the adult glands both in vivo and in vitro suggests the correlation between the differentiation of Pg-producing cells and morphogenesis of the glands surrounded by the developed connective tissue.  相似文献   

7.
Tissue composition and the distribution of body mass are described for four genera of East African Bovidae (Madoqua, Gazella, Damaliscus, Hippotragus) with supporting data from four others (Neotragus, Oryx, Tragelaphus, Connochaetes). These species are high in muscle mass, an adaptation convergent with other high-speed terrestrial cursors, bounders, and saltators. The segments below the elbow/cubitus and knee/stifle/genu joints in small bovids are both lighter in percent of total body mass (8.6% TBM) and less heavily muscled (10-15% of total limb musculature) than those segments in macaques (13.6% TBM, 20-25% of the limb musculature). Bovid species differ from one another in the regional distribution of muscle mass. Madoqua kirkii (4-5 kg) concentrates muscle in the lumbar extensors and hindlimbs; large species such as Damaliscus doreas (50-60 kg) and Hippotragus niger (160-220 kg) distribute it more evenly between the lumbar and cervical regions and between the hindlimbs and forelimbs. Gazella dorcas (10-20 kg) is quantitatively intermediate in those characteristics. The redistribution of muscle mass with increasing size correlates with the loss of axial bending of the vertebral column: in small, hindlimb dominant, 'dorsomobile' species such as Madoqua sagittal mobility increases stride length through 'extended' suspension; in large 'dorsostable' species such as Damaliscus and Hippotragus the vertebral column resists bending, consequently abbreviating or omitting this non-contact phase of the gait cycle. Locomotor adaptation as it is reflected in size, shape, and musculoskeletal structure is the key to habitat choice, dietary specialization, social structure, and male agonistic behavior and, therefore, central to the fabric of behavioral ecology.  相似文献   

8.
We investigated the myogenic properties of rabbit fast or slow muscle satellite cells during their differentiation in culture, with a particular attention to the expression of myosin heavy chain and myogenic regulatory factor genes. Satellite cells were isolated from Semimembranosus proprius (slow-twitch muscle; 100% type I fibres) and Semimembranosus accessorius (fast-twitch muscle; almost 100% type II fibres) muscles of 3-month-old rabbits. Satellite cells in culture possess different behaviours according to their origin. Cells isolated from slow muscle proliferate faster, fuse earlier into more numerous myotubes and mature more rapidly into striated contractile fibres than do cells isolated from fast muscle. This pattern of proliferation and differentiation is also seen in the expression of myogenic regulatory factor genes. Myf5 is detected in both fast or slow 6-day-old cell cultures, when satellite cells are in the exponential stage of proliferation. MyoD and myogenin are subsequently detected in slow satellite cell cultures, but their expression in fast cell cultures is delayed by 2 and 4 days respectively. MRF4 is detected in both types of cultures when they contain striated and contractile myofibres. Muscle-specific myosin heavy chains are expressed earlier in slow satellite cell cultures. No adult myosin heavy chain isoforms are detected in fast cell cultures for 13 days, whereas cultures from slow cells express neonatal, adult slow and adult fast myosin heavy chain isoforms at that time. In both fast and slow satellite cell cultures containing striated contractile fibres, neonatal and adult myosin heavy chain isoforms are coexpressed. However, cultures made from satellite cells derived from slow muscles express the slow myosin heavy chain isoform, in addition to the neonatal and the fast isoforms. These results are further supported by the expression of the mRNA encoding the adult myosin heavy chain isoforms. These data provide further evidence for the existence of satellite cell diversity between two rabbit muscles of different fibre-type composition, and also suggest the existence of differently preprogrammed satellite cells.  相似文献   

9.
Bovine brain microvessel pericytes, bone cells, and fibroblasts were grown in tissue culture in 3%, 21%, or 60% oxygen for 7 weeks. Alkaline phosphatase activity was highest in bone cells and pericytes grown in 3% oxygen, with the activity higher in the former than the latter. Alkaline phosphatase activity was very low in fibroblasts at every oxygen concentration. Osteocalcin concentration was higher in bone cells than in pericytes, was not detected in fibroblasts, and in bone cells and pericytes the concentration was highest in 21% oxygen. Other bovine brain microvessel pericytes were grown in 3% or 21% oxygen for 3 to 24 days in the presence or absence of bone morphogenetic protein 2 and in the presence or absence of parathyroid hormone. At Day 3 of culture, alkaline phosphatase activity was highest in 21% oxygen in the presence of bone morphogenetic protein 2. By Day 17 of culture, alkaline phosphatase activity was highest in 3% oxygen whether bone morphogenetic protein was present or not. Cyclic adenosine monophosphate production in pericytes in response to parathyroid hormone stimulation was very modest when compared with that of bone cells, and this response was not found to be significantly altered by bone morphogenetic protein 2, duration of culture, or the oxygen concentration during incubation. These findings show that the microvessel pericyte is capable of exhibiting several oxygen dependent, phenotypic characteristics ascribed to osteoblasts.  相似文献   

10.
11.
Fragments of the wing disc of Drosophila (fig. 2) were either injected into mature third instar larvae for immediate metamorphosis, or cultured in adult abdomens for seven days before being transferred to larvae for metamorphosis. The structures differentiated during metamorphosis were then analysed. The results of the first series of experiments were used to construct an accurate fate map of the disc, and those of the second series were used to determine the regenerative properties of the disc. The fate map (fig. 7) shows presumptive proximal parts (notum, pleura, and dorsal and ventral hinge) at the two ends of the disc, with presumptive distal wing parts in between. During metamorphosis the disc epithelium folds upon itself along the presumptive wing border, bringing dorsal and ventral wing and hinge surfaces into apposition. The wing surfaces occupy a much smaller relative area, and the hinge parts a much larger relative area, in the fate map than in the adult structure. The cultured fragments, in general, behaved in accordance with the rule that when two cut surfaces are created by cutting across the disc, regeneration occurs from one of the cut surfaces and duplication occurs from the other (fig. 14). It was possible to define a level in the longitudinal axis of the disc from which regeneration proceeds outwards. Cut surfaces facing away from this level show regeneration, while cut surfaces facing this level undergo duplication. Similar behavior was found for the transverse axis, and for two diagonal series of cuts. Some fragments with two cut edges could regenerate from one edge while duplicating from the other, whereas others could regenerate from two cut edges simultaneously. However, fragments with four cut edges showed incomplete regeneration, and a high tendency to duplicate even though regeneration in all directions might have been expected on the basis of the other experiments.  相似文献   

12.
Endothelial cells and pericytes are closely associated in brain capillaries. Together with astrocytic foot processes, they form the blood-brain barrier. Capillaries were isolated from bovine brain cortex. Pure populations of endothelial cells and pericytes were isolated and cultured in vitro. Polarized monolayers of endothelial cells preferentially secreted immunoreactive endothelin-1 (Et-1) at their abluminal (brain-facing) membrane. They did not express receptors for Et-1. Pericytes expressed BQ-123-sensitive ETA receptors for endothelins as evidenced by 125I-Et-1 binding experiments. These receptors were coupled to phospholipase C as demonstrated by intracellular calcium measurements using indo-1-loaded cells. Addition of Et-1 to pericytes induced marked changes in the cell morphology that were associated with a reorganization of F-actin and intermediate filaments. It is concluded that Et-1 is a paracrine mediator at the bovine blood-brain barrier and that capillary pericytes are target cells for endothelium-derived Et-1.  相似文献   

13.
Over the past century extensive experimental materials have been accumulated concerning cell sources of lens and retina regeneration, successive transformations of the cells, regulatory factors, and gene expression during restitution of these eye structures. The use of nuclear and cytoplasmic markers provided convincing evidence that the removed lens is restituted from the dorsal iris cells in vivo or from embryonic cells of the pigment epithelium and retina in vitro. The removed or destroyed retina is restituted as a result of transdifferentiation of the pigment epithelium cells in amphibians, fish, birds, and mammals during embryogenesis, in larvae of some anuran amphibians, and in adult newts. Cell precursors of rods are a cell source of retina regeneration in adult fish. A subpopulation of randomly distributed cells, which are a cell source of rod formation during the normal development of the eye was found in the external nuclear layer with the use of electron microscopy and nuclear and cytoplasmic markers. These cells are not only a source of regeneration of rods, but also of cones and cells of the internal nuclear layer after destruction of the corresponding retina layers. There is a peripheral growth area in the retina of vertebrates, where multi- and unipolar cells are localized, which provide for the retina growth during ontogenesis. A paradox of retina regeneration consists in that these little differentiated cells are not a source of complete restitution of the removed or destroyed retina. They make only a small contribution to its regeneration corresponding to the growth potential of cells of this eye region, while restitution of the retina proceeds only at the expense of cells of another type of differentiation. A factor controlling the differentiated state of the cell was found in the dorsal iris during studies of lens regeneration. Removal of this factor in the early stages of cell transformations leads to the initiation of lens regeneration. The factor is not specific and was identified in many cells of vertebrates, including the pigment epithelium and limb tissues, which, as is known, may be fully restituted. Studies of gene expression during lens and retina regeneration are now at the initial stage. The greatest advances were achieved on the model of transdifferentiation of the pigment epithelium cells of chick embryos into lentoids. Expression of genes MMP115 and pP344 was established in the pigment epithelium cells, which characterize the pigmented phenotype of the initial cells. Expression of the alpha-, beta-, and delta-crystallin genes was found in the lentoids, which characterize the phenotype of regenerating structures. The gene activity appears to be switched at an intermediate stage during cell dedifferentiation. Expression of the gamma-crystallin genes during lens regeneration in adult newts is initiated after completion of dedifferentiation and cell proliferation in the dorsal iris. The genes specifically expressed in the dorsal and ventral iris and in the retina rudiment have been identified by the method of gene subtraction. Expression of homeobox-containing genes from the family of PAX genes was found during lens regeneration in adult newts and retina regeneration in adult fish. The role of growth factors (FGF) as morphogenetic factors was proved, which are involved in a yet unknown way of altering the differentiation pathway of the initial cells during formation of the neuroepithelium rudiment in chick embryos, adult newts, and fish.  相似文献   

14.
To determine whether the remodeling of the well-organized intestinal epithelium during amphibian metamorphosis is regionally regulated along the anteroposterior axis of the intestine, we raised a polyclonal antibody against the Xenopus laevis intestinal fatty acid-binding protein (IFABP), which is known to be specifically expressed in intestinal absorptive cells, and examined immunohistochemically the differentiation, proliferation, and apoptosis of the epithelial cells throughout X. laevis small intestine. During pre- and prometamorphosis, IFABP-immunoreactive (ir) epithelial cells were localized only in the anterior half of the larval intestine. At the beginning of metamorphic climax, apoptotic cells detected by nick end-labeling (TUNEL) suddenly increased in number in the entire larval epithelium, concurrently with the appearance of adult epithelial primordia. Subsequently, the adult primordia in the anterior part of the intestine developed more rapidly by active cell proliferation than those in the posterior part, and replaced the larval epithelial cells earlier than those in the posterior part. IFABP-ir cells in the adult epithelium were first detectable at the tips of newly formed folds in the proximal part of the intestine. Thereafter, IFABP expression gradually progressed both in the anteroposterior direction and in the crest-trough direction of the folds. These results suggest that developmental processes of the adult epithelium in the X. laevis intestine are regionally regulated along the anteroposterior axis of the intestine, which is maintained throughout metamorphosis, and along the trough-crest axis of the epithelial folds, which is newly established during metamorphosis. Furthermore, the regional differences in IFABP expression along the anteroposterior axis of the intestine were reproduced in organ cultures in vitro. In addition, IFABP expression was first down-regulated and then reactivated in vitro when the anterior part, but not the posterior part, of the larval intestine was treated with thyroid hormone (TH) for extended periods. Therefore, it seems that, in addition to TH, an endogenous factor(s) localized in the intestine itself with an anteroposterior gradient participates in the development of the adult epithelium during amphibian metamorphosis.  相似文献   

15.
A survey of ectoparasites from 219 meadowlarks conducted during 2 consecutive fall-winter periods in a coastal prairie found immature Amblyomma maculatum Koch to be the most abundant parasite. Peak larval infestations occurred in December with 80-100% of collected birds infested and with a monthly mean of up to 34 larvae per bird. Peak nymphal infestations occurred in February or March with 95-100% of birds infested and with a monthly mean of up to 11 nymphs per bird. Seasonal dynamics of these stages offered possible insight into the persistence of A. maculatum in an area long infested with the red imported fire ant, Solenopsis invicta Buren. Four other species of ticks also were collected but in substantially lower numbers; Amblyomma cajennense (F.), Amblyomma inornatum (Banks), Haemaphysalis chordeilus (Packard), and Haemaphysalis leporispalustris (Packard). This appears to be the 1st host record of A. cajennense from meadowlarks. A collection of 17 northern bobwhite quail indicated that most of these birds were infested with A. maculatum but at a lower level than meadowlarks. The collections of 2 species of Mallophaga from meadowlarks and 4 species from the northern bobwhite quail are discussed.  相似文献   

16.
17.
18.
During development of the amniote embryo, the dorsolateral territory of the somite is destined to give rise to the hypaxial skeletal musculature. To study the mechanisms that lead to the formation of this musculature, we cloned the chick Lbx1 gene that is specific to prospective hypaxial myoblasts at occipital, cervical and limb levels. Using this gene as a marker, we characterised the anatomical structures that produce the signals necessary for the specification of the hypaxial musculature by ablating them or transplanting them to ectopic locations in the chick embryo. In addition, we inserted BMP4 soaked beads medial to the somite. Our data suggest that lateralising signals from intermediate and lateral mesoderm have to synergise with dorsalising signals from the surface ectoderm to induce the formation of the hypaxial musculature. However, the lateralising function of the lateral mesoderm can only in part be mimicked by BMP4.  相似文献   

19.
Tenascin-R is a multidomain molecule of the extracellular matrix in the CNS with neurite outgrowth inhibitory functions. Despite the fact that in amphibians spontaneous axonal regeneration of the optic nerve occurs, we show here that the molecule appears concomitantly with myelination during metamorphosis and is present in the adult optic nerve of the salamander Pleurodeles waltl by immunoblots and immunohistochemistry. In vitro, adult retinal ganglion cell axons were not able to grow from retinal explants on a tenascin-R substrate or to cross a sharp substrate border of tenascin-R in the presence of laminin, indicating that tenascin-R inhibits regrowth of retinal ganglion cell axons. After an optic nerve crush, immunoreactivity for tenascin-R was reduced to undetectable levels within 8 d. Immunoreactivity for the myelin-associated glycoprotein (MAG) was also diminished by that time. Myelin was removed by phagocytosing cells at 8-14 d after the lesion, as demonstrated by electron microscopy. Tenascin-R immunoreactivity was again detectable at 6 months after the lesion, correlated with remyelination as indicated by MAG immunohistochemistry. Regenerating axons began to repopulate the distal lesioned nerve at 9 d after a crush and grew in close contact with putative astrocytic processes in the periphery of the nerve, close to the pia, as demonstrated by anterograde tracing. Thus, the onset of axonal regrowth over the lesion site was correlated with the removal of inhibitory molecules in the optic nerve, which may be necessary for successful axonal regeneration in the CNS of amphibians.  相似文献   

20.
The purpose of this study was to investigate the initiation and time course of the regeneration process in fragments of skeletal muscle transplants as a function of muscle tissue age at implantation. The appearance of desmin occurs at the very beginning of myogenesis. The transgenic desmin nls lacZ mice used in the study bear a transgene in which the 1 kb DNA 5' regulatory sequence of the desmin gene is linked to a reporter gene coding for Escherichia coli beta-galactosidase. The desmin lacZ transgene labels muscle cells in which the desmin synthesis programme has commenced. We implanted pectoralis muscle fragments from fetal transgenic embryos and mature and old transgenic mice into mature non-transgenic mice. Early events of myogenesis occurring during regeneration started sooner in transplants from 4-month-old (day 3 post-implantation) muscle than in those from 24-month-old (day 5-6 post-implantation) muscle, and they lasted longer in those from young (day 17 post-implantation) than in those from old (day 14 post-implantation) muscle fragments. In adult muscle, transgene activation proceeded from the periphery toward the centre of the transplant. In transplants from fetal 18-day-old pectoralis, myotubes with transgene activity were observed from day 1 to day 19. Desmin immunoreactivity, which appeared about one day after transgene activation, was followed by myosin expression. In adult transplants, the continuity of laminin labelling was disrupted around degenerative fibres, illustrating alteration of the extracellular matrix. Our data suggest that satellite cells from old muscle tissue have lower proliferative capacity and/or less access to trophic substances released by the host (damaged fibres, vascularization) than those from fetal or young adult muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号