共查询到20条相似文献,搜索用时 15 毫秒
1.
A nonoptical detection of the optical fibre tip has been developed. By detecting the output signal from a tiny piezoelectric detector attached to the vibrating fibre tip, the distance between the fibre tip and the sample has been successfully controlled. The frequency responses of the system composed of tip, the dither and the detector have been studied. The difference between the shear-force detection and the tapping-mode detection is discussed. It is found that the shear force exerted on the tip reduces the vibration amplitude with an unvaried resonance frequency. However, in the tapping mode, the resonance frequency varies with the tip-sample distance as the force is exerted on the fibre tip only within a half period. This requires better adjustments for the tapping-mode detection. 相似文献
2.
A nonoptical detection of the optical fibre tip has been developed. By detecting the output signal from a tiny piezoelectric detector attached to the vibrating fibre tip, the distance between the fibre tip and the sample has been successfully controlled. The frequency responses of the system composed of tip, the dither and the detector have been studied. The difference between the shear-force detection and the tapping-mode detection is discussed. It is found that the shear force exerted on the tip reduces the vibration amplitude with an unvaried resonance frequency. However, in the tapping mode, the resonance frequency varies with the tip–sample distance as the force is exerted on the fibre tip only within a half period. This requires better adjustments for the tapping-mode detection. 相似文献
3.
We studied a nanometre-sized optical probe in a scanning near-field optical microscope. The probe profile is determined by using a knife-edge method and a modulated transfer function evaluation method which uses nanometre-sized line-and-space tungsten patterns (with spaces 1 microm to 50 nm apart) on SiO2 substrates. The aluminium-covered, pipette-pulled fibre probe used here has two optical probes: one with a large diameter (350 nm) and the other with a small diameter (10 nm). The small-diameter probe has an optical intensity approximately 63 times larger than that of the large-diameter probe, but the power is about 1/25 of that of the large probe. 相似文献
4.
We studied a nanometre-sized optical probe in a scanning near-field optical microscope. The probe profile is determined by using a knife-edge method and a modulated transfer function evaluation method which uses nanometre-sized line-and-space tungsten patterns (with spaces 1 μm to 50 nm apart) on SiO2 substrates. The aluminium-covered, pipette-pulled fibre probe used here has two optical probes: one with a large diameter (350 nm) and the other with a small diameter (10 nm). The small-diameter probe has an optical intensity ≈63 times larger than that of the large-diameter probe, but the power is about 1/25 of that of the large probe. 相似文献
5.
Inverse estimation of the tapered probe-sample shear force of scanning near-field optical microscope
In this paper, the conjugate gradient method of minimization with an adjoint equation is successfully applied to solve the inverse problem in estimating the shear force between the tapered probe and sample during the scanning process of scanning near-field optical microscope (SNOM). While knowing the available deflection at the tapered probe tip, the determination of the interaction shear force is regarded as an inverse vibration problem. In the estimating processes, no prior information on the functional form of the unknown quantity is required. The accuracy of the inverse analysis is examined by using the simulated exact and inexact measurements of deflection at the tapered probe tip. Numerical results show that good estimations on the interaction shear force can be obtained for all the test cases considered in this study. 相似文献
6.
A new microscope system that has the combined capabilities of a scanning near-field optical microscope (SNOM) and a scanning tunnelling microscope (STM) is described. This is achieved with the use of a single metallic probe tip. The distance between the probe tip and the sample surface is regulated by keeping the tunnelling current constant. In this mode of operation, information about the optical properties of the sample, such as its refractive index distribution and absorption characteristics, can be disassociated from the information describing its surface structure. Details of the surface structure can be studied at resolutions smaller than the illumination wavelength. The performance of the microscope is evaluated by analysing a grating sample that was made by coating a glass substrate with gold. The results are then compared with the corresponding SNOM and STM images of the grating. 相似文献
7.
Fluorescently labelled myofibrils were imaged in physiological salt solution by near-field scanning optical microscopy and shear-force microscopy. These myofibrils were imaged in vitro , naturally adhering to glass while retaining their ability to contract. The Z-line protein structure of the myofibrils was antibody labelled and easily identified in the near-field fluorescence images. The distinctive protein banding structure of the myofibril was also seen clearly in the shear-force images without any labelling requirement. With the microscope in the transmission mode, resolution of the fluorescence images was degraded significantly by excessive specimen thickness (>1 μm), whereas the shear-force images were less affected by specimen thickness and more affected by poor adherence to the substrate. Although the exact mechanism generating contrast in the shear-force images is still unknown, shear-force imaging appears to be a promising new imaging modality. 相似文献
8.
We investigated fluorescence imaging using a near-field scanning optical microscope which uses a laser-stabilized gold nanoparticle as a near-field probe. This microscope is suitable for observations of biological specimens in aqueous solutions because the probe particle is held by a noncontact force exerted by a laser beam. Theoretical calculations based on Mie scattering theory are presented to evaluate the near-field enhancement by a gold particle of 40 nm diameter. We also present fluorescence images of a single fluorescent bead and discuss the near-field contribution to the fluorescence image in this type of microscope. 相似文献
9.
We investigated fluorescence imaging using a near-field scanning optical microscope which uses a laser-stabilized gold nanoparticle as a near-field probe. This microscope is suitable for observations of biological specimens in aqueous solutions because the probe particle is held by a noncontact force exerted by a laser beam. Theoretical calculations based on Mie scattering theory are presented to evaluate the near-field enhancement by a gold particle of 40 nm diameter. We also present fluorescence images of a single fluorescent bead and discuss the near-field contribution to the fluorescence image in this type of microscope. 相似文献
10.
We examined the tip–sample interaction of a Si (111) surface processed with HF solution. The interaction length of the probe with its hydrophobic surface is ≈30, and the frequency responses show an interaction force of elastic type. By contrast, the damping curve on a hydrophilic surface, Si with thin oxide, operates on a longer length of 100. Here, the frequency responses indicate an interaction force of the viscous type. 相似文献
11.
We examined the tip-sample interaction of a Si(111) surface processed with HF solution. The interaction length of the probe with its hydrophobic surface is approximately 30, and the frequency responses show an interaction force of elastic type. By contrast, the damping curve on a hydrophilic surface, Si with thin oxide, operates on a longer length of 100. Here, the frequency responses indicate an interaction force of the viscous type. 相似文献
12.
A near-field scanning optical microscope for operation within a storage Dewar is described. It was designed for studies of opaque samples and operates in the collection mode. Illumination can be either through the tip or from the side via a separate fiber. Scans can be begun within 2 h after start of cooldown. Its rigid design allows high resolution and long scans with no additional vibration isolation. To illustrate its performance, measurements of photoluminescence in GaAs/AlGaAs heterostructures are presented. The signal and noise levels for the two illumination modes are examined. 相似文献
13.
We introduce a method of dye fluorescence excitation and measurement that utilizes a near-field scanning optical microscope (NSOM). This NSOM uses an apertureless metallic probe, and an optical system that contains a high numerical aperture (NA) objective lens (NA= 1.4). When the area which satisfies NA < 1 is masked, the objective lens allows for the rejection of possible transmitted light (NA < 1) through the sample. In such conditions, the focused spot consists of only the evanescent field. We found that this NSOM system strongly reduces the background of the dye fluorescence and allows for the measurement of the fluorescence intensity below the diffraction limit of the excitation source. 相似文献
14.
We introduce a method of dye fluorescence excitation and measurement that utilizes a near-field scanning optical microscope (NSOM). This NSOM uses an apertureless metallic probe, and an optical system that contains a high numerical aperture (NA) objective lens (NA = 1.4). When the area which satisfies NA < 1 is masked, the objective lens allows for the rejection of possible transmitted light (NA < 1) through the sample. In such conditions, the focused spot consists of only the evanescent field. We found that this NSOM system strongly reduces the background of the dye fluorescence and allows for the measurement of the fluorescence intensity below the diffraction limit of the excitation source. 相似文献
15.
A novel etching method for an optical fibre probe of a scanning near-field optical microscope (SNOM) was developed to fabricate a variety of tip shapes through dynamic movement during etching. By moving the fibre in two-phase fluids of HF solution and organic solvent, the taper length and angle can be varied according to the movement of the position of the meniscus on the optical fibre. This method produces both long (sharp angle) and short (wide angle) tapered tips compared to tips made with stationary etching processes. A bent-type probe for a SNOM/AFM was fabricated by applying this technique and its throughput efficiency was examined. A wide-angle probe with a 50 degrees angle at the tip showed a throughput efficiency of 3.3 x 10(-4) at a resolution of 100 nm. 相似文献
16.
A novel etching method for an optical fibre probe of a scanning near-field optical microscope (SNOM) was developed to fabricate a variety of tip shapes through dynamic movement during etching. By moving the fibre in two-phase fluids of HF solution and organic solvent, the taper length and angle can be varied according to the movement of the position of the meniscus on the optical fibre. This method produces both long (sharp angle) and short (wide angle) tapered tips compared to tips made with stationary etching processes. A bent-type probe for a SNOM/AFM was fabricated by applying this technique and its throughput efficiency was examined. A wide-angle probe with a 50° angle at the tip showed a throughput efficiency of 3.3 × 10−4 at a resolution of 100 nm. 相似文献
17.
Tiribilli B Margheri G Baschieri P Menozzi C Chavan D Iannuzzi D 《Journal of microscopy》2011,242(1):10-14
We present a fibre-top probe fabricated by carving a tipped cantilever on an optical fibre, with the tip machined in correspondence of the fibre core. When approached to an optical prism illuminated under total internal reflection conditions, the tip of the cantilever detects the optical tunnelling signal, while the light coupled from the opposite end of the fibre measures the deflection of the cantilever. Our results suggest that fibre-top technology can be used for the development of a new generation of hybrid probes that can combine atomic force microscopy with scanning near field optical microscopy. 相似文献
18.
The experimental results of the direct measurement of the absolute value of interaction force between the fiber probe of a scanning near-field optical microscope (SNOM) operated in shear force mode and a sample, which were performed using combined SNOM-atomic force microscope setup, are discussed for the out-of-resonance fiber probe excitation mode. We demonstrate that the value of the tapping component of the total force for this mode at typical dither amplitudes is of the order of 10 nN and thus is quite comparable with the value of this force for in resonance fiber probe excitation mode. It is also shown that for all modes this force component is essentially smaller than the usually neglected static attraction force, which is of the order of 200 nN. The true contact nature of the tip-sample interaction during the out of resonance mode is proven. From this, we conclude that such a detection mode is very promising for operation in liquids, where other modes encounter great difficulties. 相似文献
19.
We explore the performance of a scanning near-field infrared microscope, which works by scattering tightly focused CO2 laser radiation (lambda = 10 microm) from the apex of a metallized atomic force microscope tip. The infrared images of test samples prove a spatial resolution of 30 nm and are free of topographical and inertial artefacts, thus they should be of great interest for practical applications. We also observe that the infrared contrast vanishes when the input beam polarization is orthogonal to the tip axis, in accordance with theoretical expectations for a mechanism of longitudinal field interaction. 相似文献
20.
We have developed a new type of scanning near-field optical microscope (SNOM) utilizing optical fibres. The probe tip is controlled by shear force feedback with a fibre interferometer and signal light is collected directly by a multimode fibre. These features make the SNOM head more compact and less sensitive to vibration. Further advantages of this new type of SNOM are that it obviates the need for optical windows in the cryostat and offers easy optical alignment. 相似文献