首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 234 毫秒
1.
煤变质程度是控制煤储层物性的关键因素,不同煤阶煤储层孔裂隙发育特征存在较大差异。以鄂尔多斯盆地东缘山西组煤层为例,基于SEM、荧光显微观察、压汞、低温液氮吸附、低场核磁共振和X-CT扫描三维重构等实验技术手段,研究不同煤阶煤储层物性特征及变化规律,揭示煤变质程度对孔裂隙发育的控制作用规律。研究表明:随着变质程度增高,煤中植物组织孔、粒间孔等原生孔隙减少而气孔等次生孔隙增加;孔隙度呈"减小—增大—减小"的波状变化,大中孔比例先减小后趋于稳定,微小孔比例变化趋势与之相反;吸附孔孔径增大,BJH总孔体积和BET比表面积减小,孔隙结构趋于均一而孔隙表面先变粗糙后逐渐光滑;煤中裂隙先减少后增加,裂隙性质逐渐变好,裂隙排列逐渐规则化。  相似文献   

2.
煤岩孔隙结构特征是判断煤储层含气性的关键因素之一,孔隙结构的精细表征对于厚煤层中优质储层的识别意义重大,但褐煤储层孔隙结构特征难以通过单一手段全面表征。以扫描电镜电子成像技术(SEM)为基础,利用低温液氮吸附实验、高压压汞实验在孔径探测范围及精度上的互补开展联合分析,实现海拉尔盆地下白垩统伊敏组褐煤样品全孔径结构表征,并探讨褐煤孔隙结构的影响因素。结果表明:①研究区煤样总孔容、总孔面积随孔隙尺寸分布存在明显差异。伊敏煤矿等煤样孔体积的贡献主要来自大孔;吸附面积主要由微孔及过渡孔提供。牙克石煤矿煤样孔体积的主要贡献来自微孔,微孔贡献总孔面积的82.07%。②显微组分中腐殖组含量增加有利于微孔、过渡孔发育;惰质组含量的增加有利于中孔、大孔的发育。③煤样结构保存指数、森林指数与总孔容呈正相关关系,与总孔面积呈负相关关系;总孔容随凝胶化指数增大而减小,与总孔面积变化规律相反;地下水流动指数与总孔容、总孔面积间关系不明显。④成煤环境为无覆水的氧化环境,形成原生组织孔丰富、中孔—大孔为主、孔隙形态以槽状孔或狭缝孔为主的孔隙结构。成煤期覆水程度较深时,煤层凝胶化程度高,植物原生组织孔减少,中孔—大孔优先被矿物填充,孔隙结构呈低孔容、高孔面积的特点。  相似文献   

3.
微生物代谢把煤转化为甲烷为主的气体,不但增加煤层气资源量,还能实现煤储层的生物增透。选择3种煤阶煤样进行模拟生物甲烷生成实验,通过压汞法分别测试代谢前后煤的孔隙结构,并通过X-射线衍射和FTIR测试代谢前后煤大分子结构。结果表明:①生物甲烷代谢后煤样大孔孔容及所占比率显著增加,小孔和微孔孔容有所减少,总孔容、平均孔径和孔隙度也相应增加,而孔比表面积有一定程度降低;②微生物作用后煤样的开放型孔增加,孔隙连通性增强;③生物甲烷代谢改变煤孔隙结构是通过生物酶作用于其大分子结构,使官能团和侧链脱落,苯环打开,氧含量增加,煤的晶化程度降低。微生物把煤转化为生物甲烷的同时,改善了煤的孔隙结构且降低了比表面积,有利于煤层气的解吸和运移产出,对煤层气开发有重要潜在意义。  相似文献   

4.
采用分形维数计算方法可以对煤的孔隙结构进行精确的定量描述。为了表征海拉尔盆地褐煤吸附孔的孔隙结构,基于液氮吸附实验、扫描电镜等手段,对研究区煤储层的吸附孔孔隙结构进行了分析,并利用FHH(Frenkel-Halsey-Hill)模型计算了煤样吸附孔分形维数,讨论了最大镜质体反射率(Ro,max)及分形维数与煤质、孔隙比表面积、总孔体积等之间的关系。研究结果表明:①研究区煤样吸附、脱附曲线可以分为A、B、C共3种类型;②A型孔隙形态为开放型的平板孔及圆筒孔,煤样具有较大的比表面积、总孔体积和较小的平均孔径;③B型孔隙形态为开放型的平板孔及楔形孔,煤样具有较小的比表面积、总孔体积和较大的平均孔径;④C型孔隙形态为一端封闭的平行板状孔及楔形孔,煤样具有较小的比表面积和较大的总孔体积、平均孔径;⑤煤孔隙表面分形维数(D1)与水分含量无关,与灰分产率呈正相关,与固定碳含量呈"U"字形关系,与Ro,max呈倒"U"字形关系;⑥孔隙结构分形维数(D2)与水分含量呈负相关,与灰分产率呈正相关,与固定碳含量呈"U"字形关系,与Ro,max...  相似文献   

5.
煤层气开发受多种因素的影响,为了研究生物甲烷代谢对煤层气开采指标的影响,选择不同煤阶的煤样进行了生物代谢模拟实验。通过生物产气数据、代谢前后煤样等温吸附和孔隙结构等参数测试,计算煤层气的采收率、含气饱和度、临储比等开采性指标并分析其变化规律。结果表明:1煤层生物产气能提高煤层气资源量,但随着煤变质程度的增加,生物产气量逐渐下降,同时煤的亲甲烷能力也降低;2生物产气对煤储层孔隙结构有明显的改善,其大孔数量和总孔容两个指标显著增加,从而提高了煤储层的孔渗性;3生物产气后煤储层的临界解吸压力、含气饱和度与采收率等开采指标也都有不同程度的提高,河南义马千秋矿和山西柳林沙曲矿煤样的含气饱和度提高的幅度较大,山西西山官地矿煤样的变化幅度次之,但总体的变化趋势具有一致性。结论认为,煤层生物产气不但能增加煤层气资源量,而且还有助于提高煤层的可采性。该研究成果可以为我国煤层气生物工程现场实施提供参考。  相似文献   

6.
煤中孔隙大小分布不均且分布范围较广,因而利用单一的方法难以对煤的多尺度孔隙结构进行有效地表征。为此,综合运用扫描电镜、低温液氮吸附、高压压汞、恒速压汞等实验方法,对煤的多尺度孔隙结构特征进行综合分析,并揭示变质作用对煤孔体积、孔比表面积的影响,以及煤岩渗透率与孔隙结构特征参数的关系。研究结果表明:(1)随煤变质程度增强,煤中纳米孔体积及孔比表面积均呈现先减小后增大的趋势,并且在R_(o,max)为1.8%左右时达到最小值;(2)煤样孔隙半径、喉道半径整体均呈现正态分布,并且随着煤变质程度的增加,最大分布频率对应的孔隙半径增大;(3)低煤阶烟煤煤样的喉道半径分布范围最宽,最大连通喉道半径及喉道半径平均值均最大;(4)无烟煤煤样的喉道半径分布范围最窄且最大连通喉道半径最小;(5)低、中煤阶烟煤煤样的孔喉比分布存在着单一主峰,并且主峰对应孔喉比相对较小;(6)煤岩渗透率与孔隙度、喉道半径平均值表现出了较好的正相关关系,其与孔喉比平均值呈负相关关系,而与孔隙半径平均值的关系则不明显。  相似文献   

7.
在煤储层低温条件下,二氧化氯(ClO2)不仅实现了煤层气井水力压裂时高黏压裂液的快速破胶和返排,还降低了煤的亲甲烷能力,但其强氧化性对煤储层孔隙结构的影响问题却还没有搞清楚。为此,采集了3种不同煤阶煤样(样品分别来自河南省义马市千秋矿井、焦作市中马村矿井和山西省柳林县沙曲矿井),将其粉碎(筛选粒径为2 mm左右),采用浓度为4 000 μg/g的ClO2溶液浸泡72 h,利用压汞法分析ClO2溶液处理前后煤样的孔隙度、孔径分布、孔容、比表面积等孔隙结构的变化特征。实验结果表明:①处理后煤样的孔隙度、孔容得到不同程度的提高,大孔和中孔的孔容比增加;②进-退汞曲线的滞后现象消失及张开度变小,孔隙的连通性增强;③孔隙比表面积值降低,其中,小孔和微孔的比表面积比有所减小。结论认为:二氧化氯对煤储层具有氧化刻蚀增透作用,能够改善煤储层的孔隙结构,一定程度上增大了煤储层的渗透率,有利于煤层气的运移和产出,值得在煤层气行业进行推广应用。  相似文献   

8.
煤变质程度对煤储层物性的控制作用   总被引:6,自引:1,他引:5  
通过对大量煤岩样品的压汞实验和低温氮吸附实验测试结果的系统分析,讨论了煤变质程度对煤储层物性的控制作用。结果发现:煤样的压汞孔隙度随煤级的升高呈现出高-低-高的变化趋势;孔喉平均直径小于1 μm的孔隙结构在各种不同煤级的样品中均大量分布,而孔喉平均直径大于1 μm的孔隙结构则仅在中低煤级样品中大量分布,在无烟煤中更是很少见到;在中低煤级阶段,随着煤变质程度的增高,低温氮测试的煤比表面积逐渐降低,到无烟煤阶段,煤的比表面积又开始增加。结论认为:煤的孔隙度、孔隙结构和比表面积均受煤变质程度的控制,且在烟煤与无烟煤的交界处发生突变。  相似文献   

9.
页岩孔隙结构的定量表征可为页岩储层质量评价提供基础参数,但是利用常规方法很难准确表征页岩的微米-纳米级孔隙结构。 以四川盆地龙马溪组含气页岩为研究对象,综合对比常用的氮气( N 2)吸附法、高压压汞法、核磁共振法等页岩测试手段的原理及优缺点,提出利用低压氮气吸附法测得的累计孔径分布来拟合页岩核磁 T 2 谱相对应的累计孔径分布,优化页岩核磁 T 2 谱与孔径的转换系数 C ,进而应磁共振测试结果来表征页岩中不同尺度的孔隙分布。 该方法可以弥补传统的低压氮气吸附与高压压汞联合表征方法的不足,因为高压压汞法测试可能会导致页岩破裂,产生大量微米级裂缝,这些微裂缝很难与天然微裂缝区分开。 此外,核磁共振具有对岩样加工简单、人工破坏性小、测试不需外来压力等优点,因此推荐低压氮气吸附法与核磁共振法联合表征页岩的孔隙结构方法,它能科学、准确地表征页岩的孔喉分布。 研究表明,龙马溪组页岩孔径分布曲线具有双峰或三峰特征,主要孔径为 0.2~100.0 nm ,介孔和微孔占优势,孔隙体积百分比分别为 67.75% 和 25.33% 。 最终明确了该区页岩储层孔隙结构的定量表征方法。  相似文献   

10.
为探讨高煤级煤的微观孔隙结构特征及其对含气性的影响,选取黔西地区黔普地1井龙潭组5件高煤级煤样品,分别采用高压压汞、低温N2吸附和CO2吸附对各煤样的纳米级孔隙进行定量表征,基于BJH和DFT方程分别计算孔隙的孔径、孔体积和比表面积,分析煤的微孔(孔径<2 nm)、介孔(孔径2~50 nm)和宏孔(孔径>50 nm)的孔径分布特征,并统计各级孔径对孔体积和比表面积的贡献率。在低温N2吸附实验的基础上,运用FHH模型分析了高煤级煤孔隙结构分形性质及其控制因素。采用线性拟合的方法,讨论了高煤级煤的持续演化对微孔和介孔的影响,以及各级孔径的比表面积对含气性的控制作用。结果表明:微孔、介孔和宏孔对孔体积的贡献率分别为49.47%、33.22%及17.31%,对比表面积的贡献率依次为85.44%、14.35%及0.21%;高煤级煤的孔隙形态可分为2类:小于3.7 nm的孔主要以一端开口的孔为主,大于3.7 nm的孔则主要为两端开口的孔和细颈瓶孔;孔隙分形维数随着地层压力的增加而增大,且以3.7 nm为界,大孔隙比小孔隙具有更加复杂的空间结构;微孔和介孔随镜质体反射率呈现规律性的变化,微孔的大量形成与煤大分子空间结构演化导致的介孔体积缩小有关;微孔对CH4吸附量的控制作用远超过介孔和宏孔,小于2 nm的微孔为煤层气的吸附提供了主要的空间。  相似文献   

11.
采用NOVA 2000 e型比表面积及孔隙度分析仪测定载体硅胶的比表面积和孔隙结构,考察了该方法的准确性和重复性,并对自制GC,进口955及LG 3种载体硅胶样品进行了测定,利用BJH法和NLDFT法对硅胶的孔径分布进行了计算。结果表明,该方法的测试结果准确,被测样品的比表面积、总孔容和平均孔径测定结果的相对标准偏差均小于2%;3种硅胶样品均含有圆柱状且孔径分布较窄的中孔,GC硅胶的比表面积和总孔容均较2种进口硅胶偏大;GC硅胶和955硅胶的孔径分布更接近,而LG硅胶的孔径分布范围相对更窄且孔隙分布更均匀。  相似文献   

12.
为系统总结华北地区各煤类的主要物性特征,指导煤层气的勘探开发,对该区各种煤类共205件煤样进行了压汞实验,分析了各煤类孔径结构的比孔容、比表面积特征。基于180件煤样的高压等温吸附实验,探讨了朗格缪尔体积(VL,daf)、朗格缪尔压力与煤级的关系,发现朗格缪尔体积与煤级的关系呈现出两段式变化模式,即煤化程度在Ro,max<4%之前,VL,daf随Ro,max的增加而增大,当Ro,max>4%后,VL,daf随Ro,max的增加而减少,而朗格缪尔压力与煤级的关系复杂,数据十分离散。基于该区煤层气试井成果(170层次试井储层压力、204层次试井渗透率),划分了煤储层试井储层压力、试井渗透率类型:该区以欠压储层为主,占69.4%左右,正常压力储层占27.1%,超压储层仅占3.5%,储层压力梯度总体随埋深的增加呈现出增大的趋势;超低渗透储层占26.0%,低渗透储层占36.8%,中渗透储层占18.1%,高渗透储层占19.1%,试井渗透率总体随埋深的增加而减少。  相似文献   

13.
多尺度微观孔隙结构对低阶煤储层煤层气吸附/解吸过程的研究具有重要意义。以黄陇侏罗系煤田和陕北侏罗系煤田低阶煤为研究对象,采用压汞、液氮吸附和CO2吸附等测试手段表征低阶煤储层的孔径分布、孔隙类型等参数,联合核磁共振测试定量分析低阶煤阶段孔径和多尺度孔径分布特征。结果表明,低阶煤孔隙以微孔为主,大孔次之。微孔、大孔、介孔对比表面积的贡献率依次减小。低阶煤储层孔隙类型以两端开口的“柱状孔”和“墨水瓶孔”为主,孔隙连通性较好。核磁共振法获取样品的T2c截止值为1.4~155.2 ms,变化较大,束缚流体饱和度(BVI)为79.21%~96.96%,可动流体饱和度低。低阶煤储层的孔隙结构复杂多样,单一测试技术与联合计算表征方法在表征低阶煤储层的孔隙结构时差异较大。  相似文献   

14.
针对四川盆地南部筠连地区煤层气井挑选了16个镜质组含量大于75%和7个惰质组含量大于75%的高阶煤样,进行了扫描电镜、低温氮气吸附实验和核磁共振物性测试分析,对富镜质组和富惰质组高阶煤的纳米级孔隙结构特征进行了系统的定性和定量对比研究。研究结果表明:惰质组相对于镜质组原生孔(植物组织孔)更为发育,而后生孔(气孔)和外生孔(角砾孔和破裂孔)在镜质组中更为发育;富镜质组和富惰质组高阶煤均具有复杂的纳米级孔隙结构,然而富惰质组高阶煤孔隙形态更为复杂特殊(墨水瓶状孔更为发育);富镜质组和富惰质组高阶煤的吸附曲线形态在初始阶段(p/p0<0.05)存在明显的差异,富惰质组煤样的吸附曲线在初始阶段(p/p0<0.05)均出现快速上升的现象,而富镜质组煤样在该阶段均呈现出缓缓上升的特点,由此得出惰质组中含有更多孔径小于0.64 nm的分子级孔;富惰质组高阶煤中平均孔比表面积、平均孔体积及氮气吸附量均大于富镜质组高阶煤,二者纳米孔隙平均孔径相近;富镜质组和富惰质组高阶煤中对孔比表面积起到主要贡献的孔径均分布在2~4 nm,可推测两种煤中小于4 n...  相似文献   

15.
通过孔隙度实验、低温N2吸附法和CO2吸附法,对修武盆地RDZ01井下寒武统荷塘组页岩孔隙发育特征进行定量表征,结合总有机碳含量、矿物组成及有机质的热演化程度,讨论孔隙发育特征主控因素。结果表明:孔隙形态以楔形孔为主,并发育墨水瓶形孔及狭缝形孔。页岩孔隙度为1.24%~2.91%,具低孔隙度特征;微孔、中孔和大孔3类孔隙分别占总孔体积的35.45%、44.54%和20.01%。页岩总孔体积为5.33×10-3 ~20.10×10-3 cm3/g,其中低温N2吸附法和CO2吸附法平均孔体积分别为7.40×10-3 cm3/g和2.24×10-3 cm3/g;总比表面积为7.62~17.84 m2/g,其中低温N2吸附法和CO2吸附法平均比表面积分别为5.23 m2/g和7.41 m2/g。孔径分布的主峰值小于10.00 nm,微孔的结构复杂,0.30~0.70 nm的孔隙较为发育,大的比表面积为页岩气提供更多的吸附位。总有机碳含量是微孔发育的主控因素,同时促进中孔发育,对大孔的影响较弱;黏土矿物增多会降低页岩的孔隙度;高石英含量为总孔体积和总比表面积增大的有利因素。修武盆地下寒武统荷塘组海相页岩和鄂西地区下侏罗统自流井组页岩储集层特征相似,呈现良好的储集能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号