共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
分析最大熵模型开源代码的原理和各参数的意义,采用频次和平均互信息相结合特征筛选和过滤方法,用Delphi语者编程实现汉语词义消歧的最大熵模型,运用GIS(Generalized Iterative Scaling)算法计算模型的参数。结合一些语占知识规则解决训练语料的数据稀疏问题,所实现的汉语词义消歧与标注系统,对800多个多义词进行词义标注,取得了较好的标注正确率。 相似文献
3.
基于特征选择和最大熵模型的汉语词义消歧 总被引:4,自引:0,他引:4
词义消歧是自然语言处理中一类典型的分类问题.在分类中,特征的选择至关重要.通常情况下,特征是由人工选择的,这就要求特征选取者对于待分类的问题本身和分类模型的特点有深刻的认识.分析了汉语词义消岐中特征模板对消歧结果的影响,在此基础上提出一套基于最大熵分类模型的自动特征选择方法,包括针对所有歧义词的统一特征模板选择和针对单个歧义词的独立特征模板优化算法.实验结果表明,使用自动选择的特征,不仅简化了特征模板,而且提高了汉语词义消歧的性能.与SemEval 2007:task #5的最好成绩相比,该方法分别在微平均值MicroAve(micro-average accuracy))和宏平均值MacroAve(macro-average accuracy))上提升了3.10%和2.96%. 相似文献
4.
词义消歧要解决的问题是如何让计算机理解多义词在特定的上下文环境中具体代表的语义。多义词多为常用词,在语料中出现的频率很高。确立一种合适的建模方法,并选择一种行之有效的机器学习方法,是解决词义消歧问题的首要任务。贝叶斯模型在词义消歧中的构建和实现上相对要简便易用,机器学习过程也简洁高效,特别是贝叶斯模型作为词义消歧工具,无论是实现的效率,还是消歧的效果都比较理想。 相似文献
5.
基于向量空间模型的有导词义消歧 总被引:21,自引:1,他引:21
词义消歧一直是自然语言理解中的一个关键问题,该问题解决的好坏直接关系到自然语言处理中诸多应用问题的效果优劣。由于自然语言知识表示的困难,在手工规则的词义消歧难以达到理想效果的情况下,各种有导机器学习方法被应用于词义消歧任务中,借鉴前人的成果引入信息检索领域中空间模型文档词语权重计算技术来解决多义词义项的知识表示问题,并提出了上下文位置权重的计算方法,给出了一种基于向量空间模型的词义消岐有导机器学习方法。该方法将多义词的义项和上下文分别映射到向量空间中,通过计算多义词上下文向量与义项向量的距离,采用k-NN(k=1)方法来确定上下文向量的义项分类。在9个汉语高频多义词的开放和封闭测试中均取得了突出的成绩(封闭测试平均正确率为96.31%,开放测试平均正确率为92.98%),验证了该方法的有效性。 相似文献
6.
词义消歧要解决如何让计算机理解多义词在上下文中的具体含义,对信息检索、机器翻译、文本分类和自动文摘等自然语言处理问题有着十分重要的作用。通过引入句法信息,提出了一种新的词义消歧方法。构造歧义词汇上下文的句法树,提取句法信息、词性信息和词形信息作为消歧特征。利用贝叶斯模型来建立词义消歧分类器,并将其应用到测试数据集上。实验结果表明:消歧的准确率有所提升,达到了65%。 相似文献
7.
8.
利用浅层句法分析提取特征的词义消歧 总被引:1,自引:0,他引:1
针对如何从文本中提取高质量消歧特征的问题,提出了基于浅层句法分析的消歧特征提取算法,建立了以语块分析识别为核心的特征提取模型.该模型通过对实词类型语块识别、分析中心词语词性和虚词类型语块分析,得到多义词的消歧特征.以北京大学计算语言研究所的现代汉语基本标注语料库为基础,选取了44个多义词,通过使用最大熵消歧模型进行训练和预测实验,准确率达到了78.71%. 相似文献
9.
词义消歧一直是自然语言处理领域中的关键性问题。为了提高词义消歧的准确率,从目标歧义词汇出发,挖掘左右词单元的语义知识。以贝叶斯模型为基础,结合左右词单元的语义信息,提出了一种新的词义消歧方法。以SemEval-2007:Task#5作为训练语料和测试语料,对词义消歧分类器进行优化,并对优化后的分类器进行测试。实验结果表明:词义消歧的准确率有所提高。 相似文献
10.
11.
12.
从神经网络的基本原理和自动词义排歧的技术入手,阐明应用神经网络技术进行汉语词义排歧研究的基本方法和步骤,并给出了实验结果和分析。 相似文献
13.
14.
离合词词义消歧要解决如何让计算机理解离合词中的歧义词在具体上下文中的含义。针对离合词中歧义词在机器翻译中造成的对照翻译不准确以及在信息检索中无法匹配有效信息等问题,将词义消歧的方法应用于离合词中的歧义词,采用SVM模型建立分类器。为了提高离合词词义消歧的正确率,在提取特征时,结合离合词的特点,不仅提取了歧义词上下文中的局部词、局部词性、局部词及词性3类特征,还提取了“离”形式的歧义词的中间插入部分的特征;将文本特征转换为特征向量时,对布尔权重法进行了改进,依次固定某种类型特征权重,分别改变另外两种类型特征权重的消歧正确率来验证3类特征的消歧效果。实验结果表明,局部词特征、局部词及词性特征对消歧效果的影响高于局部词性特征,且采用不同类型的特征权重与采用相同的权重相比,消歧正确率提高了1.03%~5.69%。 相似文献
15.
针对传统的基于义原同现频率的汉语词义排歧方法存在“盲目性”的不足,笔者根据《知网》中对概念定义的描述,分别计算多义词的每个义项与特征词的第一独立义原、其他独立义原、关系义原、符号义原之间的相关系数;最后通过比较多义词的每个义项与特征词之间的相关系数来决定多义词的义项.经过实验验证,该方法进一步提高了词义排歧的效果. 相似文献
16.
David Yarowsky 《Computers and the Humanities》2000,34(1-2):179-186
This paper describes a supervised algorithm for word sensedisambiguation based on hierarchies of decision lists. This algorithmsupports a useful degree of conditional branching while minimizing thetraining data fragmentation typical of decision trees. Classificationsare based on a rich set of collocational, morphological and syntacticcontextual features, extracted automatically from training data andweighted sensitive to the nature of the feature and feature class. Thealgorithm is evaluated comprehensively in the SENSEVAL framework,achieving the top performance of all participating supervised systems onthe 36 test words where training data is available. 相似文献
17.
基于对数模型的词义自动消歧 总被引:9,自引:0,他引:9
提出了一种对数模型(logarithmmodel,简称LM),构造了一个词义自动消歧系统LM-WSD(wordsensedisambiguationbasedonlogarithmmodel).在词义自动消歧实验中,构造了4种计算模型进行词义消歧,根据4个计算模型的消歧结果,分析了高频率词义、指示词、特定领域、固定搭配和固定用法信息对名词和动词词义消歧的影响.目前,该词义自动消歧系统LM-WSD已经应用于基于词层的英汉机器翻译系统(汽车配件专业领域)中,有效地提高了翻译性能. 相似文献