首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
《铸造技术》2016,(5):988-991
采用等通道转角挤压变形工艺,在573 K下以Bc路径对Mg-6Zn-2Si镁合金进行4道次和8道次挤压细化合金晶粒来提高其力学性能,同时对合金室温拉伸断口进行分析,并阐述了等通道挤压改善实验合金微观组织和力学性能的机理。结果表明:经4道次挤压后晶粒由310μm细化到13μm,Mg_2Si相最大约60μm,细化为细小颗粒状约7μm,α-Mg基体与Mg Zn相均得到显著细化,屈服强度提高180%,伸长率提高140%,抗拉强度提高75%。与4道次相比,经8道次挤压后微观组织无明显变化,屈服强度有所提高,抗拉强度和伸长率变化不大。合金的室温拉伸断口由铸态合金的脆性断口过渡为韧性断口,并且韧窝加深,分布更均匀。  相似文献   

2.
采用双通道等径侧面挤压剧烈塑性变形工艺提高AA5083铝合金的力学性能。采用多组实验研究路径类型(A和B路径)和挤压道次对材料力学性能的影响。挤压道次为6道次,挤压温度范围为573~473 K,采用金相、硬度测试和拉伸测试研究这些工艺参数的影响。硬度测试表明经6道次挤压后,硬度提高了64%,且分布均匀。屈服强度和抗拉强度分别提高了107%和46%。这是由于晶粒的剧烈剪切变形和变形温度降低导致的晶粒细化。TEM结果表明,经DECLE 6道次变形后,合金的平均晶粒尺寸从退火态的100μm减小至200 nm。对比研究了路径A和B的实验结果,并得到一些重要结论。  相似文献   

3.
采用等通道转角挤压(ECAP)工艺以Bc路径在623K温度下对Mg-1.5Mn-0.3Ce镁合金进行变形,观察显微组织与织构,测试了力学性能。显微组织分析表明,镁合金经ECAP变形晶粒尺寸明显得到细化,经6道次ECAP变形后晶粒尺寸由原轧制态的约26.1μm细化至约1.2μm,且细小的第二相粒子Mg12Ce弥散分布于晶内及晶界处;同时经ECAP变形后,原始轧制织构随变形道次的增加不断减小,并开始转变为ECAP织构,织构强度不断增强;力学性能结果表明,由于晶粒细化作用大于织构软化作用,前3道次ECAP变形镁合金强度随道次的增加不断提高,与Hall?Petch关系相符,在第3道次时其抗拉强度和屈服强度达到最大值,分别为272.2和263.7MPa;在4道次之后形成较强的非基面织构,镁合金强度下降,与Hall?Petch呈相悖关系。断口分析表明,轧制态与ECAP变形镁合金的断裂方式都是沿晶断裂,由于6道次变形镁合金晶粒细化,存在更多的韧窝并获得16.8%最大室温伸长率。  相似文献   

4.
等通道转角挤压对AZ80A镁合金晶粒细化的影响   总被引:1,自引:1,他引:0  
利用预先经(400±5)℃×16h均匀化处理的10mm×10mm截面的条形试样在280℃下对AZ80A铸态合金进行等通道转角挤压试验,研究了挤压路径、挤压道次和多步法挤压对晶粒细化和力学性能的影响.结果表明,ECAE8道次挤压变形可把晶粒细化到6μm以下:在一定范围内增加道次数和降低变形温度均有助于组织细化;在相同道次和挤压路径下多步法ECAE变形由于降低了后续变形温度从而获得了晶粒更加细小的镁合金.  相似文献   

5.
AZ31镁合金等通道挤压组织性能的研究   总被引:1,自引:0,他引:1  
研究等通道挤压工艺(ECAP)对AZ31镁合金的晶粒细化效果,采用自制的90°模具,在四种路径下(A、Ba、Bc、C)对材料进行ECAP变形后的微观组织和力学性能进行分析。结果表明,每挤压一次试样沿相同方向旋转90°的挤压路径晶粒细化效果较好,随着挤压道次增加,晶粒发生细化,力学性能发生改变,当挤压到4道次,平均晶粒尺寸由原来的70μm细化为6μm,抗拉强度从307.1 MPa变为268.1 MPa,伸长率达到45%。拉伸断口韧窝数量增多。  相似文献   

6.
研究Mg-1Si铸造镁合金在挤压温度为623 K和挤压路径为BC条件下,等通道转角挤压(ECAP)不同道次变形对其组织及室温力学性能的影响。结果表明,随着挤压道次增加,α-Mg基体、Mg2Si相均得到细化且趋于均匀分布;铸态试样屈服强度为55 N/mm2,抗拉强度为93 N/mm2,伸长率为6%;1道次挤压试样的屈服强度提高67%,抗拉强度提高86%,伸长率提高95%;2道次挤压试样的抗拉强度和屈服强度与1道次相比有所降低,但伸长率进一步提高;3、4道次后试样的组织和性能相差不大;随着挤压道次增加,合金的伸长率逐渐提高,塑性提高。  相似文献   

7.
采用光学显微镜及透射电镜研究了Mg-5.5Zn-1.7Nd-0.7Cd-0.5Zr镁合金在不同挤压变形条件下的组织和性能。结果表明,在一定的挤压条件下,当挤压温度降低或挤压比增大,晶粒变细小,合金的抗拉强度和屈服强度提高;在温度为340℃,挤压比为16时,合金抗拉强度为334MPa,屈服强度为300MPa,伸长率为13%,力学性能优良,平均晶粒直径为7μm。  相似文献   

8.
通过循环扩挤(CEEOP)变形方法对100 mm×50 mm×170 mm的AZ80镁合金块状材料进行挤压加工,借助计算机模拟仿真、组织观察、拉伸试验、硬度测试等手段研究了1~4道次CEEOP变形对AZ80镁合金等效应变、显微组织和力学性能的影响。结果表明:随着CEEOP挤压道次的增加,晶粒的尺寸越来越小且分布均匀,1道次后晶粒尺寸可以从200μm左右细化到6μm,4道次后晶粒尺寸细化到1.5μm左右,整体分布均匀呈等轴晶晶粒,晶粒细化的机制是晶粒的机械破碎和动态再结晶,2道次以后晶粒细化效果不太明显。力学性能较均匀化退火态有了大幅度的提升,1道次硬度HB从均匀化退火态的615 MPa提升到了830.7 MPa,4道次达到862.7 MPa,抗拉强度与屈服强度分别从均匀化退火态的230.9和115 MPa提升到了262.7和155 MPa,4道次可以达到294和170 MPa,通过对比ECAP变形试样的组织与力学性能数据,在相同的变形温度与累积应变下,CEEOP变形方法比ECAP变形能够更好地细化晶粒和提高材料的抗拉强度和屈服强度。  相似文献   

9.
研究了AZ31镁合金组织的演变过程和力学性能,结果表明:通过挤压变形及动态再结晶,可以显著细化合金晶粒,其尺寸可由约100μm减少到5 μm;二次变形可以提高镁合金的抗拉强度.可见塑性变形是同时实现镁合金构件成形和强韧化的有效途径.  相似文献   

10.
通过循环扩挤(CEEOP)变形方法对100mm×50mm×170mm的 AZ80镁合金块状材料进行挤压加工,借助计算机模拟仿真、组织观察、拉伸试验、硬度测试等手段研究了1~4道次CEEOP变形对AZ80镁合金等效应变、显微组织和力学性能的影响。结果表明:随着CEEOP挤压道次的增加,晶粒的尺寸越来越小且分布均匀,1道次后晶粒尺寸可以从200μm左右细化到6μm,4道次后晶粒尺寸细化到1.5μm左右,整体分布均匀呈等轴晶晶粒,晶粒细化的机制是晶粒的机械破碎和动态再结晶,2道次以后晶粒细化效果不太明显。力学性能较均匀化退火态有了大幅度的提升,1道次硬度从均匀化退火态的61.5HB提升到了83.07HB,4道次达到86.27HB,抗拉强度与屈服强度分别从均匀化退火态的230.9MPa和115MPa提升到了262.7MPa和155MPa,四道次可以达到294MPa和170MPa,通过对比ECAP变形试样的组织与力学性能数据,在相同的变形温度与累积应变下,CEEOP变形方法比ECAP变形能够更好地细化晶粒和提高材料的抗拉强度和屈服强度。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号