首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
A diagonal form fast multipole boundary element method (BEM) is presented in this paper for solving 3-D acoustic wave problems based on the Burton-Miller boundary integral equation (BIE) formulation. Analytical expressions of the moments in the diagonal fast multipole BEM are derived for constant elements, which are shown to be more accurate, stable and efficient than those using direct numerical integration. Numerical examples show that using the analytical moments can reduce the CPU time by a lot as compared with that using the direct numerical integration. The percentage of CPU time reduction largely depends on the proportion of the time used for moments calculation to the overall solution time. Several examples are studied to investigate the effectiveness and efficiency of the developed diagonal fast multipole BEM as compared with earlier p3 fast multipole method BEM, including a scattering problem of a dolphin modeled with 404,422 boundary elements and a radiation problem of a train wheel track modeled with 257,972 elements. These realistic, large-scale BEM models clearly demonstrate the effectiveness, efficiency and potential of the developed diagonal form fast multipole BEM for solving large-scale acoustic wave problems.  相似文献   

2.
A boundary element (BE) approach based on the traction boundary integral equation for the general solution of three-dimensional (3D) crack problems is presented. The hypersingular and strongly singular integrals appearing in the formulation are analytically transformed to yield line and surface integrals which are at most weakly singular. Regularization and analytical transformation of the boundary integrals is done prior to any boundary discretization. The integration process does not require of any change of coordinates and the resulting integrals can be numerically evaluated in a simple and efficient way. In order to show the generality, simplicity and robustness of the proposed approach, different flat and curved crack problems in infinite and finite domains are analyzed. A simple BE discretization strategy is adopted. The results obtained using rather course meshes are very accurate. The emphasis of this paper is on the effective application of the proposed BE approach and it is pretended to contribute to the transformation of hypersingular boundary element formulation in something as clear, general and easy to handle as the classical formulation but much better suited for fracture mechanics problems.  相似文献   

3.
In this paper a Galerkin least-squares (GLS) finite element method, in which residuals in least-squares form are added to the standard Galerkin variational equation, is developed to solve the Helmholtz equation in two dimensions. An important feature of GLS methods is the introduction of a local mesh parameter that may be designed to provide accurate solutions with relatively coarse meshes. Previous work has accomplished this for the one-dimensional Helmholtz equation using dispersion analysis. In this paper, the selection of the GLS mesh parameter for two dimensions is considered, and leads to elements that exhibit improved phase accuracy. For any given direction of wave propagation, an optimal GLS mesh parameter is determined using two-dimensional Fourier analysis. In general problems, the direction of wave propagation will not be known a priori. In this case, an optimal GLS parameter is found which reduces phase error for all possible wave vector orientations over elements. The optimal GLS parameters are derived for both consistent and lumped mass approximations. Several numerical examples are given and the results compared with those obtained from the Galerkin method. The extension of GLS to higher-order quadratic interpolations is also presented.  相似文献   

4.
In this paper, a novel finite element approach is presented to solve three‐dimensional problems using trimmed hexahedral elements generated by cutting a simple block consisting of regular hexahedral elements with a computer‐aided design (CAD) surface. Trimmed hexahedral elements, which are polyhedral elements with curved faces, are placed at the boundaries of finite element models, and regular hexahedral elements remain in the interior regions. Shape functions for trimmed hexahedral elements are developed by using moving least square approximation with harmonic weight functions based on an extension of Wachspress coordinates to curved faces. A subdivision of polyhedral domains into tetrahedral sub‐domains is performed to construct shape functions for trimmed hexahedral elements, and numerical integration of the weak form can be carried out consistently over the tetrahedral sub‐domains. Trimmed hexahedral elements have similar properties to conventional finite elements regarding the continuity, the completeness, the node–element connectivity, and the inter‐element compatibility. Numerical examples for three‐dimensional linear elastic problems with complex geometries show the efficiency and effectiveness of the present method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A meshless method for the solution of Helmholtz equation has been developed by using the radial basis integral equation method (RBIEM). The derivation of the integral equation used in the RBIEM is based on the fundamental solution of the Helmholtz equation, therefore domain integrals are not encountered in the method. The method exploits the advantage of placing the source points always in the centre of circular sub-domains in order to avoid singular or near-singular integrals. Three equations for two-dimensional (2D) or four for three-dimensional (3D) potential problems are required at each node. The first equation is the integral equation arising from the application of the Green’s identities and the remaining equations are the derivatives of the first equation with respect to space coordinates. Radial basis function (RBF) interpolation is applied in order to obtain the values of the field variable and partial derivatives at the boundary of the circular sub-domains, providing this way the boundary conditions for solution of the integral equations at the nodes (centres of circles). The accuracy and robustness of the method has been tested on some analytical solutions of the problem. Two different RBFs have been used, namely augmented thin plate spline (ATPS) in 2D and f(R)=4Rln(R) augmented by a second order polynomial. The latter has been found to produce more accurate results.  相似文献   

6.
Several special finite element methods have been proposed to solve Helmholtz problems in the mid‐frequency regime, such as the Partition of Unity Method, the Ultra Weak Variational Formulation and the Discontinuous Enrichment Method. The first main purpose of this paper is to present a discontinuous Galerkin method with plane waves (which is a variant of the Discontinuous Enrichment Method) to solve the displacement‐based acoustic equation. The use of the displacement variable is often necessary in the context of fluid–structure interactions. A well‐known issue with this model is the presence of spurious vortical modes when one uses standard finite elements such as Lagrange elements. This problem, also known as the locking phenomenon, is observed with several other vector based equations such as incompressible elasticity and electromagnetism. So this paper also aims at assessing if the special finite element methods suffer from the locking phenomenon in the context of the displacement acoustic equation. The discontinuous Galerkin method presented in this paper is shown to be very accurate and stable, i.e. no spurious modes are observed. The optimal choice of the various parameters are discussed with regards to numerical accuracy and conditioning. Some interesting properties of the mixed displacement–pressure formulation are also presented. Furthermore, the use of the Partition of Unity Method is also presented, but it is found that spurious vortical modes may appear with this method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
This work presents a multi‐domain decomposition integral equation method for the numerical solution of domain dominant problems, for which it is known that the standard Boundary Element Method (BEM) is in disadvantage in comparison with classical domain schemes, such as Finite Difference (FDM) and Finite Element (FEM) methods. As in the recently developed Green Element Method (GEM), in the present approach the original domain is divided into several subdomains. In each of them the corresponding Green's integral representational formula is applied, and on the interfaces of the adjacent subregions the full matching conditions are imposed. In contrast with the GEM, where in each subregion the domain integrals are computed by the use of cell integration, here those integrals are transformed into surface integrals at the contour of each subregion via the Dual Reciprocity Method (DRM), using some of the most efficient radial basis functions known in the literature on mathematical interpolation. In the numerical examples presented in the paper, the contour elements are defined in terms of isoparametric linear elements, for which the analytical integrations of the kernels of the integral representation formula are known. As in the FEM and GEM the obtained global matrix system possesses a banded structure. However in contrast with these two methods (GEM and non‐Hermitian FEM), here one is able to solve the system for the complete internal nodal variables, i.e. the field variables and their derivatives, without any additional interpolation. Finally, some examples showing the accuracy, the efficiency, and the flexibility of the method for the solution of the linear and non‐linear convection–diffusion equation are presented. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
A boundary integral equation (BIE) formulation for elasticity problems with mixed boundary conditions, proposed by Parton and Perlin (Mathematical Methods of the Theory of Elasticity, Mir, Moscow, 1984), is implemented in this paper using quadratic boundary elements. The formulation is specialised to Stokes flow problems by setting the Poisson ratio to 0·5 in the relevant kernels. The implementation is used to analyse non-trivial three dimensional problems in elasticity and Stokes flows. The results compare well with those obtained by a direct boundary element method. An outline of the extension of the formulation to non-linear problems is also given.  相似文献   

9.
The Timoshenko beam model of the differential quadrature element method   总被引:1,自引:0,他引:1  
A new numerical approach for solving Timoshenko beam problems is proposed. The approach uses the differential quadrature method (DQM) to discretize the Timoshenko beam equations defined on all elements, the transition conditions defined on the inter-element boundary of two adjacent elements and the boundary conditions of Timoshenko beam structures. The resulting overall discrete equation can be solved by using a solver of the linear algebra. Numerical results of the DQEM Timoshenko beam model are presented. They demonstrate the DQEM numerical method.  相似文献   

10.
A number of numerical methods for mildly nonlinear elliptic boundary value problems on general domains is presented. The discretization procedures considered are: a fourth-order FFT-type method, collocation using Hermite bicubic splines and Galerkin with linear triangular as well as quadratic quadrilateral isoparametric elements. The linearized collocation and Galerkin equations are solved by various direct methods available in the ELLPACK system. A comparative study of the above equation solvers is presented for different domain geometries and compilers. The evaluation of software for the general mildly nonlinear elliptic equations is performed over 36 instances from a population of 16 parametrized problems with ‘real world’ and ‘mathematical’ behaviour. The performance data suggests that collocation is an effective method for such general problems, while Galerkin with quadratic quadrilateral isoparametric elements is uniformly superior to the one with linear elements.  相似文献   

11.
An efficient numerical method is proposed for 2-d potential problems in anisotropic media with continuously variable material coefficients. The method is based on the local integral relationships (integral form of balance equation and/or integral equations utilizing fundamental solutions) and consistent approximation of field variable using standard domain-type elements. The accuracy and convergence of the proposed method is tested by several examples and compared with benchmark analytical solutions.  相似文献   

12.
本文介绍弹性力学对偶求解体系的近期研究和进展:(1)提出一种新的正交关系。不用辛几何的概念,直接导出对偶微分方程组;(2)基于新正交关系,建立二维弹性力学特征函数展开直接解法,求得含可对角化边界条件下的显式封闭解:(3)将对偶求解体系推广到多坐标方向,建立多坐标方向的对偶微分方程和求解体系。(4)采用偏微分方程的算子解法,建立了板状弹性体的弯曲理论,把它的解分解为弯曲齐次解、特解、和衰减解:(5)将对偶求解体系推广应用于厚板和薄板问题,建立了有关的对偶微分方程,正交关系和变分原理。  相似文献   

13.
六面体单元体积坐标方法   总被引:1,自引:0,他引:1  
基于二维问题四边形单元面积坐标法的成功思路,建立了三维六面体单元体积坐标的系统方法,包括:1)六面体单元特征参数的定义及单元退化模式研究;2)六面体单元体积坐标定义;3)六面体单元的体积坐标与直角坐标、等参坐标之间的关系;4)六面体体积坐标的微分公式。可以看到,六面体体积坐标保持了局部自然坐标的优点,并且与直角坐标始终保持线性关系。它为构造对网格畸变不敏感的新型六面体有限元模型提供了新工具。  相似文献   

14.
A boundary element method is presented for single-domain analysis of cracked three-dimensional isotropic elastostatic solids. A numerical treatment for the hypersingular Boundary Integro-Differential Equation (BIDE) for displacement derivatives is described, in which continuous boundary elements may be used. Hadamard principal values of the hypersingular integrals arising in the formulation are evaluated using polar co-ordinates defined on the tangent planes at the source point, and the free term coefficients are calculated directly using a numerical technique. The forms of the Boundary Integral Equation (BIE) and the BIDE are considered for a source point on the coincident surfaces of a crack, and a scheme is given for defining the Traction Boundary Integral Equation TBIE so that it optimally incorporates the traction information deficient in its complementary partner, the BIE. Numerical results for some example mixed-mode crack problems are presented.  相似文献   

15.
An efficient 3D multidomain boundary element method (BEM) for solving problems governed by the Laplace equation is presented. Integral boundary equations are discretized using mixed boundary elements. The field function is interpolated using a continuous linear function while its derivative in a normal direction is interpolated using a discontinuous constant function over surface boundary elements. Using a multidomain approach, also known as the subdomain technique, sparse system matrices similar to the finite element method (FEM) are obtained. Interface boundary conditions between subdomains leads to an over-determined system matrix, which is solved using a fast iterative linear least square solver. The accuracy and robustness of the developed numerical algorithm is presented on a scalar diffusion problem using simple cube geometry and various types of meshes. Efficiency is demonstrated with potential flow around the complex geometry of a fighter airplane using tetrahedral mesh with over 100,000 subdomains on a personal computer.  相似文献   

16.
A universal search method of pure longitudinal and pure transverse modes for elastic wave propagation in crystals, in general piezoelectrics, is presented. A mathematical model of pure modes for elastic waves based on adiabatic state equations for an arbitrary anisotropic piezoelectric medium and its equation of motion under elastic deformations in the rotated Cartesian coordinates is constructed. The condition for longitudinal normals is that all non-diagonal matrix elements of the effective elastic stiffness coefficients in the corresponding wave equation are equal to zero. Equating to zero non-diagonal elements only in one row of this matrix, one can obtain the condition for transverse normals. A computer program is prepared which allows to find the pure modes for elastic waves in crystals and to calculate their characteristics when symmetry class, elastic, piezoelectric, dielectric constants, and crystal density are known.  相似文献   

17.
多体系统动力学方程分为两类形式,即微分方程和微分-代数方程。这两类方程都是针对大位移系统,并且方程呈强非线性。为研究多体系统小位移或振动问题,从多体系统动力学方程出发,讨论微分-代数方程线性化计算机代数问题。利用完全笛卡尔坐标描述多刚体系统,建立多刚体系统动力学微分-代数方程。利用逐步线性化方法和计算机代数,分别对多体系统微分-代数方程的广义质量阵,约束方程和广义力阵在平衡位置附近进行Taylor展开。给出一种基于完全笛卡尔坐标的多体系统动力学微分-代数方程符号线性化方法。最后通过两个算例验证该方法的有效性。  相似文献   

18.
A new dual reciprocity‐type approach to approximating the solution of non‐homogeneous hyperbolic boundary value problems is presented in this paper. Typical variants of the dual reciprocity method obtain approximate particular solutions of boundary value problems in two steps. In the first step, the source function is approximated, typically using radial basis, trigonometric or polynomial functions. In the second step, the particular solution is obtained by analytically solving the non‐homogeneous equation having the approximation of the source function as the non‐homogeneous term. However, the particular solution trial functions obtained in this way typically have complicated expressions and, in the case of hyperbolic problems, points of singularity. Conversely, the method presented here uses the same trial functions for both source function and particular solution approximations. These functions have simple expressions and need not be singular, unless a singular particular solution is physically justified. The approximation is shown to be highly convergent and robust to mesh distortion. Any boundary method can be used to approximate the complementary solution of the boundary value problem, once its particular solution is known. The option here is to use hybrid‐Trefftz finite elements for this purpose. This option secures a domain integral‐free formulation and endorses the use of super‐sized finite elements as the (hierarchical) Trefftz bases contain relevant physical information on the modeled problem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A fast multipole boundary element method (BEM) for solving general uncoupled steady-state thermoelasticity problems in two dimensions is presented in this paper. The fast multipole BEM is developed to handle the thermal term in the thermoelasticity boundary integral equation involving temperature and heat flux distributions on the boundary of the problem domain. Fast multipole expansions, local expansions and related translations for the thermal term are derived using complex variables. Several numerical examples are presented to show the accuracy and effectiveness of the developed fast multipole BEM in calculating the displacement and stress fields for 2-D elastic bodies under various thermal loads, including thin structure domains that are difficult to mesh using the finite element method (FEM). The BEM results using constant elements are found to be accurate compared with the analytical solutions, and the accuracy of the BEM results is found to be comparable to that of the FEM with linear elements. In addition, the BEM offers the ease of use in generating the mesh for a thin structure domain or a domain with complicated geometry, such as a perforated plate with randomly distributed holes for which the FEM fails to provide an adequate mesh. These results clearly demonstrate the potential of the developed fast multipole BEM for solving 2-D thermoelasticity problems.  相似文献   

20.
This paper presents new formulations of the radial integration boundary integral equation (RIBIE) and the radial integration boundary integro-differential equation (RIBIDE) methods for the numerical solution of two-dimensional heat conduction problems with variable coefficients. The methods use a specially constructed parametrix (Levi function) to reduce the boundary-value problem (BVP) to a boundary-domain integral equation (BDIE) or boundary-domain integro-differential equation (BDIDE). The radial integration method is then employed to convert the domain integrals arising in both BDIE and BDIDE methods into equivalent boundary integrals. The resulting formulations lead to pure boundary integral and integro-differential equations with no domain integrals. Numerical examples are presented for several simple problems, for which exact solutions are available, to demonstrate the efficiency of the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号