首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 256 毫秒
1.
Unified MOSFET Short Channel Factor Using Variational Method   总被引:1,自引:1,他引:0  
It is well known that short channel effect is one of the most important constraints that determine the downscaling of MOSFET's.The relationship between the device structure configuration and short channel effect is first expressed empirically in Ref.[1].And recently,due to...  相似文献   

2.
A 2-D analytical threshold-voltage model for ultra-thin-body MOSFET with buried insulator and high-k gate dielectric is established by solving the 2-D Poisson's equation for the gate-dielectric, channel and buried-insulator regions. The validity of the model is confirmed by comparing with experimental data and other models. Using the model, the influences of gate-dielectric permittivity, buried-insulator permittivity, channel thickness, buried-insulator thickness and channel doping concentration on threshold behaviors are investigated. It is found that the threshold behaviors can be improved by using buried insulator with low permittivity, thin channel and high channel doping concentration. However, the threshold performance would be degraded when high-k gate dielectric is used due to enhanced fringing-field effect.  相似文献   

3.
Forward body biasing is a promising approach for realizing optimum threshold-voltage (V TH) scaling in the era when gate dielectric thickness can no longer be scaled down. This is confirmed experimentally and by simulation of a 10-nm gate length MOSFET. Because forward body bias (VF) decreases the depletion width (X DEP) in the channel region, it reduces V TH rolloff significantly. MOSFET performance is maximized under forward body bias with steep retrograde channel doping, and such channel doping profiles are required to accomplish good short-channel behavior (small X DEP ) at low V TH notwithstanding body bias; therefore, the combination of forward body biasing with steep retrograde channel doping profile can extend the scaling limit of conventional bulk-Si CMOS technology to 10-nm gate length MOSFET. Considering forward biased p-n junction current, parasitic bipolar transistor, and CMOS latch-up phenomena, the upper limit for |VF| should be set at 0.6-0.7 V, which is sufficient to realize significant advantages of forward body biasing.  相似文献   

4.
In this article, surface-potential-based analytical threshold voltage model for underlap Fully Depleted Silicon-On-Insulator MOSFET (underlap-SOI) is developed by solving two-dimensional Poisson equation. The gate underlap at source/drain (S/D) has different boundary conditions as compared to channel region under the gate dielectric that divide the whole channel into three regions. It leads us to derive the new surface potential model for three different channel regions, i.e. the region under the gate dielectric and two gate underlap regions at S/D. The effects of underlap length, channel length, body thickness, channel doping concentration, metal gate work function and gate dielectric constant on threshold voltage have been included in our model. The threshold voltage dependence on different device parameters has been studied using analytical model and simulations. The closeness between the simulation results and model results show that the analytical model accurately calculate the threshold voltage values for large range of device parameters.  相似文献   

5.
A study of random-dopant-fluctuation (RDF) effects on the trigate bulk MOSFET versus the planar bulk MOSFET is performed via atomistic 3D device simulation for devices with a 20 nm gate length. For identical nominal body and source/drain doping profiles and layout width, the trigate bulk MOSFET shows less threshold voltage (Vth) lowering and variation. RDF effects are found to be caused primarily by body RDF. The trigate bulk MOSFET offers a new method of VTH adjustment, via tuning of the retrograde body doping depth, to mitigate tradeoffs in VTH variation and short-channel effect control.  相似文献   

6.
凹槽栅MOSFET凹槽拐角的作用与影响研究   总被引:5,自引:0,他引:5  
孙自敏  刘理天 《半导体技术》1998,23(5):18-21,39
短沟道效应是小尺寸MOSFET中很重要的物理效应之一,凹槽栅MOSFET对短沟道效应有很强的抑制能力,通过对凹槽栅MOSFET结构,特性的研究,发现凹槽拐角对凹槽栅MOSFET的阈值电压及特性有着显著的影响,凹槽拐角处的阈值电压决定着整个凹槽栅MOSFET的阈值电压,凹槽拐角的曲率半径凹槽MOSFET一个重要的结构参数,通过对凹槽拐角的曲率半径,源漏结深及沟道掺杂浓度进行优化设计,可使凹槽栅MOS  相似文献   

7.
Accurate measurements and degradation mechanisms of the channel mobility for MOSFETs with HfO/sub 2/ as the gate dielectric have been systematically studied in this paper. The error in mobility extraction caused by a high density of interface traps for a MOSFET with high-k gate dielectric has been analyzed, and a new method to correct this error has been proposed. Other sources of error in mobility extraction, including channel resistance, gate leakage current, and contact resistance for a MOSFET with ultrathin high-k dielectric have also been investigated and reported in this paper. Based on the accurately measured channel mobility, we have analyzed the degradation mechanisms of channel mobility for a MOSFET with HfO/sub 2/ as the gate dielectric. The mobility degradation due to Coulomb scattering arising from interface trapped charges, and that due to remote soft optical phonon scattering are discussed.  相似文献   

8.
杨胜齐  何进  黄如  张兴 《电子学报》2002,30(11):1605-1608
本文提出了用异型硅岛实现的厚膜全耗尽(FD)SOI MOSFET的新结构,并分析了其性能与结构参数的关系.通过在厚膜SOI MOSFET靠近背栅的界面形成一个相反掺杂的硅岛,从而使得厚膜SOI MOSFET变成全耗尽器件.二维模拟显示,通过对异型硅岛的宽度、厚度、掺杂浓度以及在沟道中位置的分析与设计,厚膜SOI MOSFET不仅实现了全耗尽,从而克服了其固有的Kink效应,而且驱动电流也大大增加,器件速度明显提高,同时短沟性能也得到改善.模拟结果证明:优化的异型硅岛应该位于硅膜的底部中央处,整个宽度约为沟道长度的五分之三,厚度大约等于硅膜厚度的一半,掺杂浓度只要高出硅膜的掺杂浓度即可.重要的是,异型硅岛的设计允许其厚度、宽度、掺杂浓度以及位置的较大波动.可以看出,异型硅岛实现的厚膜全耗尽 SOI MOSFET 为厚膜SOI器件提供了一个更广阔的设计空间.  相似文献   

9.
A closed form analytical expression for the threshold voltage of a small geometry MOSFET is developed. The threshold voltage expression is derived from a three dimensional geometrical approximation of the bulk charge. The threshold voltage is expressed as a function of gate oxide thickness, channel doping concentraton, junction-depth, backgate bias and channel length and width. The theory is compared with experimental results and the agreement is close.  相似文献   

10.
给出包括栅电介质与耗尽层区域的边界条件和二维沟道电势分布.根据这个电势分布,得出高k栅介质MOSFET的阈值电压模型,模型中考虑短沟道效应和高k栅介质的边缘场效应.模型模拟结果和实验结果能够很好地符合.通过和一个准二维模型的结果相比较,表明该模型更准确.另外,还详细讨论了影响高k栅电介质MOSFET阈值电压的一些因素.  相似文献   

11.
给出包括栅电介质与耗尽层区域的边界条件和二维沟道电势分布.根据这个电势分布,得出高k栅介质MOSFET的阈值电压模型,模型中考虑短沟道效应和高k栅介质的边缘场效应.模型模拟结果和实验结果能够很好地符合.通过和一个准二维模型的结果相比较,表明该模型更准确.另外,还详细讨论了影响高k栅电介质MOSFET阈值电压的一些因素.  相似文献   

12.
Thin SiGe-channel confinement is found to provide significant control of the short channel effects typically associated with nonbandedge gate electrodes, in an analogous manner to ultrathin-body approaches. Gate workfunction requirements for thin-SiGe-channel p-type field effect transistors are therefore relaxed substantially more than what is expected from a simple observation of the difference between gate and channel workfunctions. In particular, thin-SiGe channels are shown to enable cost-effective high-performance bulk CMOS technologies with a single gate workfunction near the conduction bandedge. Buried channel, gate workfunction, metal gate, SiGe-channel confinement effects, SiGe-channel MOSFET, silicon germanium, ultrathin-body (UTB).  相似文献   

13.
辛艳辉  段美霞 《电子学报》2019,47(11):2432-2437
提出了一种非对称双栅应变硅HALO掺杂沟道金属氧化物半导体场效应管结构.该器件前栅和背栅由两种不同功函数的金属构成,沟道为应变硅HALO掺杂沟道,靠近源区为低掺杂区域,靠近漏区为高掺杂区域.采用分区的抛物线电势近似法和通用边界条件求解二维泊松方程,分别求解了前背栅表面势、前背栅表面电场及前背栅阈值电压,建立了双栅器件的表面势、表面电场和阈值电压解析模型.详细讨论了物理参数对解析模型的影响.研究结果表明,该器件能够很好的抑制短沟道效应、热载流子效应和漏致势垒降低效应.模型解析结果与DESSIS仿真结果吻合较好,证明了该模型的正确性.  相似文献   

14.
The introduction of an inorganic/organic or organic/organic heterojunction in the pentacene-based organic field-effect transistors is demonstrated to be in favor of improving their operating stability. The heterojunction-induced p-type doping of pentacene is nondestructive, and it can be controlled by varying the adlayer thickness. The bias stress effects are compared at similar surface carrier density for the doped and undoped devices, and the current flow in the pentacene bulk is found to be more stable than that in the conducting channel close to the gate dielectric. In the initial stage of the bias stress characteristics, the carrier trapping associated with the gate dielectric is mainly responsible for the current instability. On the other hand, in the prolonged stage, the carrier trapping in the active layer may become dominant.  相似文献   

15.
The integration of high-κ dielectrics in MOSFET devices is beset by many problems. In this paper a review on the impact of defects in high-κ materials on the MOSFET electrical characteristics is presented. Beside the quality of the bulk of the dielectric itself, the interfaces between the high-κ and the interfacial oxide layer and the gate electrode are of crucial importance. When poly-Si is used as gate electrode, the defects at the poly-Si/high-κ interface control the band alignment as well as the gate depletion. The quality and thickness of the interfacial SiO2 controls both the carrier mobility in the channel as well as the kinetics of charging and discharging of pre-existing high-κ defects. The quality of the interfacial layer has also important consequences for reliability specifications like negative bias instability and dielectric breakdown.  相似文献   

16.
Metal-insulator field-effect transistors (FETs) are fabricated using a single n-InAs nanowire (NW) with a diameter of d = 50 nm as a channel and a silicon nitride gate dielectric. The gate length and dielectric scaling behavior is experimentally studied by means of dc output- and transfer-characteristics and is modeled using the long-channel MOSFET equations. The device properties are studied for an insulating layer thickness of 20-90 nm, while the gate length is varied from 1 to 5 mum. The InAs NW FETs exhibit an excellent saturation behavior and best breakdown voltage values of V BR > 3 V. The channel current divided by diameter d of an NW reaches 3 A/mm. A maximum normalized transconductance gm /d > 2 S/mm at room temperature is routinely measured for devices with a gate length of les 2 mum and a gate dielectric layer thickness of les 30 nm.  相似文献   

17.
This paper presents an in-depth analysis of junctionless double gate vertical slit FET (JLDG VeSFET) device under process variability. It has been observed that junctionless FETs (JLDG VeSFET) are significantly less sensitive to many process parameter variations due to their inherent device structure and geometric properties. Sensitivity analysis reveals that the slit width, oxide thickness, radius of the device, gate length and channel doping concentration imperceptibly affect the device performance of JLDG VeSFET in terms of variation in threshold voltage, on current, off current and subthreshold slope (Ssub) as compared to its junction based counterpart i.e. MOSFET, because various short channel effects are well controlled in this device. The maximum variation in off current for JLDG VeSFET due to variation in different devices parameters is 5.6% whereas this variation is 38.8% for the MOS junction based device. However, variation in doping concentration in the channel region displays a small deviation in the threshold voltage and on current characteristics of the MOSFET device as compared to JL DG VeSFET.  相似文献   

18.
In this paper, we analyzed electrical characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) with plasma-exposed source–drain (S/D) bulk region. The parasitic resistance and effective channel length characteristics exhibit similar behavior with that of crystalline silicon metal oxide-semiconductor field effect transistor (c-Si MOSFET) that has doped S/D bulk region. The transfer curves little changed with gate overlap variation, and the width-normalized parasitic resistance obtained from transmission line method was as low as 3 to 6 $Omega cdot$ cm. The effective channel length was shorter than the mask channel length and showed gate-to-source $({rm V}_{rm GS})$ voltage dependency that is frequently observed for lightly doped drain (LDD) MOSFET. Experimental and simulation results showed that the plasma exposure caused an LDD-like doping effect in the S/D bulk region by inducing oxygen vacancy in the a-IGZO layer.   相似文献   

19.
A new device structure is proposed for Si MOSFET, featuring an insulated gate structure, channel doping, and finite spacing between gate and source and between gate and drain. Two-dimensional numerical analysis shows that punchthrough is suppressed and that minimum gate length, limited bypunchthrough or VTshift, is extended into the submicrometer range.  相似文献   

20.
在沟道源端一侧引入高掺杂Halo结构的异质栅SOI MOSFET,可以有效降低亚阈值电流.通过求解二维泊松方程,为该器件建立了亚阈值条件下的表面势模型.利用常规漂移.扩散理论,在表面势模型的基础上,推导出新结构器件的亚阈值电流模型.为了求解简单,文中给出了一种分段近似方法,从而得到表面势的解析表达式.结果表明,所得到的表面势解析表达式和确切解的结果高度吻合.二维器件数值模拟器ISE验证了通过表面势解析表达式得到的亚阈值电流模型,在亚阈值区二者所得结果吻合得很好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号