首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
采用微波对甘薯渣、苹果渣、大豆渣中的膳食纤维进行改性,通过扫描电镜、X-射线衍射及热重分析,研究微波对3种膳食纤维结构的影响,并对比处理前后膳食纤维持水力、持油力、胆固醇吸附力、亚硝酸根离子吸附力的变化。结果表明:微波改性可以使膳食纤维的可及性边缘暴露,结晶度升高,热稳定性加强,且3种膳食纤维的功能特性均有不同程度改善,是一种优良的膳食纤维改性方法。此外,改性后3种膳食纤维中的可溶性纤维质量分数分别提高63.11%,4.51%,358.79%,与功能特性综合提高幅度并非正相关,改性后膳食纤维功能性质的提升是可溶性膳食纤维增加与不溶性膳食纤维可及性边缘的增加共同作用的结果。  相似文献   

2.
对采用绿色木霉发酵改性的苹果渣膳食纤维的理化特性进行研究。结果表明,改性苹果渣膳食纤维显示较佳的理化性质,膨胀力为6.25mL/g,持水力为4.53g/g。改性苹果渣膳食纤维在pH 2.0条件下对NO_2~-吸附率可达98.8%,可以将NO_2~-浓度降低至3.5μmol/L,有效避免该物质对人体产生危害。吸附胆酸钠的测定结果表明,3g改性苹果渣膳食纤维对胆酸钠的吸附率可以达到72.8%,对降低血清胆固醇具有积极的意义。  相似文献   

3.
以苹果渣为原料提取苹果膳食纤维,利用单螺杆挤压机,添加阿拉伯胶进行共混挤压改性。结果表明,用此方法进行改性比单纯挤压改性效果更好,试验获得的改性最优工艺条件为:物料粒度60目,阿拉伯胶添加量为1%,螺杆转速为825r/min,静置时间为90min,加水量为20%。改性后苹果膳食纤维中水溶性膳食纤维含量达到27.7%,且其抗氧化能力和水合性质明显提高。  相似文献   

4.
试验以果汁厂榨汁后的废苹果渣为原料,经膨化处理,以纤维素酶改性后的苹果可溶性膳食纤维(SDF)得率为指标,基于单因素试验和Designexpert软件,采用响应面法分析了反应温度、时间、加酶量和加水量对于SDF得率的影响,分析结果表明温度、时间和加酶量对最终SDF得率有显著的影响,优化得到酶法苹果膳食纤维改性的最佳工艺条件参数为加酶量3.4%、料液比1:42、提取温度48℃、提取时间93min,可溶性膳食纤维的提取率为21.3%,比改性前膳食纤维的持水力和溶胀性分别提高了77.1%和60.7%,  相似文献   

5.
利用挤压膨化技术对苹果渣进行预处理,研究挤压对苹果渣水溶性膳食纤维含量、物理结构的影响,优选出最佳的苹果渣挤压工艺参数。采用响应面法对物料含水量、螺杆转速、套筒温度3个因素进行优化,通过粒径分析、扫描电子显微镜(scanning electron microscope,SEM)表征挤压膨化处理前后苹果渣物理结构的变化。结果表明:物料含水量26%,螺杆转速160 r/min,套筒温度110℃为最佳挤压工艺,在此条件下测得的挤压苹果渣的水溶性膳食纤维含量为8.64%,比未挤压提高98.17%。粒径分布图直观显示出挤压苹果渣粒径比苹果渣细,均匀度更好;SEM图像对比说明经过挤压处理,苹果渣呈现出多孔隙及疏松的结构。  相似文献   

6.
苹果膳食纤维改性实验研究   总被引:12,自引:0,他引:12  
苹果渣经过热处理、酸碱处理、挤压处理后,对其中的可溶性膳食纤维(SDF)含量的变化进行了测量,通过对比得出,挤压处理使苹果渣中的可溶性膳食纤维含量得到了最大程度的提高。  相似文献   

7.
利用高温高压、蒸煮、超声三种手段分别对小米水溶性膳食纤维进行物理改性,以探究不同物理改性对小米水溶性膳食纤维的理化性质及结构的影响。结果表明,改性后小米水溶性膳食纤维的化学基团无明显变化,表面出现裂痕,结构疏松多孔,有团聚现象,热稳定性上升,持水力、水膨胀力、持油力、结合脂肪能力均得到提高,其中经超声处理后四种能力提高最为显著(P<0.05),分别提高101.82%,36.67%,63.86%,33.08%;通过测定处理后的水溶性膳食纤维总抗氧化能力,发现经超声处理后的水溶性膳食纤维总抗氧化能力较强(P<0.05)。综上所述,三种物理改性手段均对小米水溶性膳食纤维的理化性质及结构特性具有一定影响,其中经超声处理后的小米水溶性膳食纤维理化性质改善较明显。  相似文献   

8.
试验采用过氧化氢处理苹果渣(AP),研究过氧化氢pH、质量分数、处理温度和处理时间对膳食纤维(DF)产率和可溶性膳食纤维(SDF)含量的影响,从而确定最佳处理条件,并探讨了过氧化氢处理对苹果渣性质的影响。结果表明,当过氧化氢pH为11,质量分数为1.67%,处理温度为70℃,处理时间为2 h时,DF产率可达76%,SDF含量达到30.20%。过氧化氢处理能增加AP膳食纤维的灰分含量,降低蛋白质和脂肪的含量;提高总DF(TDF)和SDF含量,降低不溶性DF(IDF)含量;提高持水力和膨胀力,降低持油力。红外光谱测定结果很好地解释了处理后苹果渣性质发生变化的原因;线虫试验表明AP和处理苹果渣膳食纤维(TAPDF)具有一定的降脂功能,且TAPDF的降脂功能明显提高。  相似文献   

9.
苹果渣膳食纤维改性工艺的初步探讨   总被引:12,自引:1,他引:12  
采用挤压技术 ,通过单螺杆挤压机对苹果渣膳食纤维进行改性工艺研究。结果表明 ,不同加水量对挤压后SDF含量有很大影响 ,加水量的多少与挤压后SDF的含量成反比 ,适宜的加水量为 2 0 %。碱性条件对膳食纤维挤压改性有促进作用 ,酸性条件对挤压改性几乎无效果 ,膳食纤维挤压改性应在碱性条件下进行 ,适宜的工艺条件是加液量 2 0 %,碱液浓度 7 5 %。  相似文献   

10.
改性葡萄皮渣膳食纤维的理化特性和结构   总被引:1,自引:0,他引:1  
陶姝颖  郭晓晖  令博  明建 《食品科学》2012,33(15):171-177
以酿酒葡萄皮渣为原料,并以葡萄皮渣中的膳食纤维为研究对象,采用超微粉碎和挤压超微粉碎技术对其进行改性处理。通过测定改性前后葡萄皮渣膳食纤维的组成、物化性质及纤维颗粒的形貌结构变化,研究不同处理对膳食纤维的改性效果。结果表明:两种改性处理均能有效增加葡萄皮渣膳食纤维中水溶性纤维的含量,并使其理化性质发生显著改变。其中超微粉碎处理有助于增强膳食纤维的阳离子交换能力与抗氧化活性,而挤压超微粉碎处理则有利于提高纤维的持水力、膨胀力及阳离子交换能力,但其抗氧化活性则显著降低。形貌结构分析结果显示,改性后纤维颗粒的粒度急剧减小,但其主要成分及化学结构基本未受影响。  相似文献   

11.
为促进芸豆渣的综合利用,对豆渣进行发酵改性,以改善其基本结构并提高其物化特性。利用复合菌系进行发酵,响应面优化制备工艺,分离可溶性膳食纤维和不溶性膳食纤维,对发酵前后的膳食纤维进行表观结构及物化特性的分析。发酵可溶性膳食纤维含量为17.47%,提高了11.84%,发酵后膳食纤维含量提高了2.81%。发酵后不溶性膳食纤维的持水力、持油力及膨胀力分别提高了2倍、6倍、1.9倍,吸附性及离子交换能力皆显著优于未处理的不溶性膳食纤维,发酵后可溶性膳食纤维的抗氧化能力也显著提高。发酵后的不溶性膳食纤维的微观结构褶皱更明显,发酵后的可溶性膳食纤维的颗粒明显增多变小且结构呈紧簇蜂窝状,红外光谱图也表明豆渣膳食纤维具有膳食纤维特有组分。发酵后的豆渣膳食纤维微观结构及物化特性皆有较明显地改善,其具备作为优质膳食纤维地潜能。  相似文献   

12.
以新鲜米糠为原料,在单因素和正交试验基础上,通过分析不同挤压工艺和酶解条件对米糠中可溶性膳食纤维提取率的影响,优化挤压膨化辅助酶水解技术提取可溶性膳食纤维。同时采用扫描电子显微镜、差示扫描热量法等表征可溶性膳食纤维的结构及物化特性。试验结果表明,在挤压温度130℃、螺杆速度200 r/min、物料含水量20%,酶用量2.0%、酶解温度75℃、酶解时间90 min、p H 6.0的条件下,可溶性膳食纤维提取率为30.35%。米糠可溶性膳食纤维表面形态疏松,呈蜂窝颗粒状,内部由纤维素类物质形成支撑主体,热力学相对稳定。与未经挤压膨化处理提取的可溶性膳食纤维相比,挤压辅助提取的可溶性膳食纤维具有更高的持水力、结合水力、溶胀力、结合脂肪能力及丰富的空间网状结构,结构及物化特性均得到明显改善。  相似文献   

13.
膳食纤维具有重要的生理功能,对人体健康起着一定的调节作用;而且,膳食纤维具备的生理功能,使得膳食纤维在食品中的应用更为广泛。甜菜制糖后会产生甜菜粕,甜菜粕中含有大量纤维素、半纤维素及果胶等膳食纤维。本文阐述了膳食纤维的定义、分类及理化性质,并且针对前人的研究总结了甜菜粕膳食纤维的特点,为以后甜菜膳食纤维的研究工作提供参考。  相似文献   

14.
目的 考察蔓越莓中膳食纤维的结构性质和功能性质。方法 利用酶解法提取蔓越莓总膳食纤维、不溶性膳食纤维和可溶性膳食纤维, 并采用红外光谱和高效液相色谱测定其官能团结构和分子量, 采用质构仪和粘度计测定其凝胶性质和粘度, 同时对膳食纤维吸附亚硝酸根离子、交换阳离子、胆固醇、重金属和葡萄糖的能力进行研究。结果 总膳食纤维和不溶性膳食纤维的提取率较高, 分别为54.67%和38.70%, 膳食纤维具有凝胶和粘度的性质, 同时在功能上有吸附亚硝酸根离子, 交换阳离子, 吸收胆固醇, 重金属离子和葡萄糖的性能。结论 蔓越莓膳食纤维具有特殊的结构性质和很好的功能活性, 可以开发蔓越莓新功能食品。  相似文献   

15.
本文采用酶法对金柚中总膳食纤维、水溶性膳食纤维、水不溶性膳食纤维分别进行提取,并对其结构、理化性质以及肠道功能进行评价。结果表明:金柚柚皮中总膳食纤维含量为65.72%,其中可溶性、水不溶性膳食纤维的得率分别为15.13%%和43.21%;总膳食纤维结构为多孔珊瑚状,水溶性膳食纤维表面有多处孔洞,水不溶性膳食纤维结构较平整;三者均含有丰富的葡萄糖、阿拉伯糖、木糖;水不溶性膳食纤维的持水力和膨胀力较好,分别为6.68 g/g和27.61 g/g;在2.5 mg/mL和10 mg/mL的体系中,水溶性膳食纤维抑制葡萄糖扩散效果更好,为0.11mg/(mL·h);水不溶性膳食纤维对α-淀粉酶抑制效果最好,此时α-淀粉酶活性为93.90%;水溶性纤维破坏胆固醇能力最强,分别为7.20%和9.40%。同时,水溶性膳食纤维具有更优越的DPPH·清除能力和铁离子还原能力。通过酶解法制得的柚皮膳食纤维有较好的理化性质,可以作为优良的食品添加剂在食品中应用。  相似文献   

16.
概述了膳食纤维具备独特生理功效与其物理特性的关系,对抗氧化膳食纤维研究状况及应用做了系统分析,综述了目前膳食纤维的复合改性方法及提取和加工等生产工艺对膳食纤维性质的影响。  相似文献   

17.
为了改善江蓠残渣膳食纤维的性能,采用纤维素酶和木聚糖酶对漂白后的江蓠残渣膳食纤维进行功能活化研究,筛选出了较佳的复合酶活化配方;采用扫描电镜研究了活化前后膳食纤维的表面结构。研究结果表明:45u/g纤维素酶和60u/g木聚糖酶复合酶处理膳食纤维可以使膳食纤维的可溶性膳食纤维含量(SDF)、持油能力(OBC)、膨胀力(SW)和持水力(WHC)分别增加29%、26%、15%和14%,活化后的江蓠残渣膳食纤维的膨胀力和持水力分别达到4.71mL/g和648%,功能性指标超过西方国家麸皮膳食纤维的标准(膨胀力4mL/g、持水力400%);通过扫描电镜观察发现,复合酶改性后的膳食纤维的表面结构变得蓬松,有孔隙结构出现,可能是其物理性能变好的原因。  相似文献   

18.
生物解离大豆残渣中膳食纤维含量丰富,为明晰生物解离提取法对大豆膳食纤维的改性效果,获取高品质大豆膳食纤维,本研究测定生物解离大豆膳食纤维的纯度、理化性质及功能特性,并与水提法天然大豆膳食纤维,化学法、发酵法及挤压膨化法改性大豆膳食纤维进行对比。结果表明:生物解离大豆膳食纤维纯度可达82.58%,其中可溶性膳食纤维含量约占总膳食纤维的60%,属于优质膳食纤维;生物解离膳食纤维的持水性、持油性、膨胀性和溶解性分别为6.87 g/g、5.48 g/g、8.22 mL/g和5.07%,均明显高于其他方式提取的膳食纤维。功能特性测定结果表明,不同方式提取的膳食纤维功能特性强弱次序均为生物解离膳食纤维>挤压膨化法改性膳食纤维>发酵法改性膳食纤维>化学法改性膳食纤维>水提法膳食纤维。生物解离膳食纤维在pH 7.0时对Pb2+、As+、Cu2+ 3 种重金属离子吸附能力分别为351.2、304.1、214.1 μmol/g。此外,生物解离大豆膳食纤维的葡萄糖吸收能力、α-淀粉酶抑制能力和胆汁酸阻滞指数分别为6.56~35.78 mmol/g、18.42%和33.12%~35.52%,均显著高于其余提取方式的膳食纤维。因此,生物解离提取法对大豆膳食纤维改性效果显著,生物解离残渣可作为一种新型的膳食纤维来源进行开发应用。  相似文献   

19.
以酿酒后桑椹果渣为原料,使用糖化酶对桑椹果渣进行去糖、碱提,通过单因素及正交试验进行桑椹果渣中不溶性膳食纤维的提取工艺条件优化,并对提取物进行理化特性研究。结果表明,桑椹果渣中不溶性膳食纤维最佳提取条件为:碱质量分数1.5%、碱提时间2.0 h、碱提温度60 ℃、料液比1∶12(g∶mL),在此优化条件下,不溶性膳食纤维提取率达28.77%,其吸水膨胀性为4.81 mL/g、持水性5.23 g/g、持油性1.6 g/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号