首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catalase catalyzed the peroxynitrite-mediated nitration of 4-hydroxyphenylacetic acid. The curve for the pH dependence of nitration was similar to that for the reaction between peroxynitrite and phenol. Cyanide, azide, and 3-amino-1,2,4-triazole inhibited the nitration in a dose-dependent way. When catalase was mixed with peroxynitrite, Compound I was detected as an intermediate. Because azide was an electron donor for the peroxidatic action of catalase, and because 3-amino-1,2,4-triazole inhibited catalase activity by binding with Compound I, peroxynitrite-mediated phenolic nitration was probably accompanied by Compound I formation. Both catalase and superoxide dismutase protected Escherichia coli from peroxynitrite toxicity.  相似文献   

2.
Nitric oxide (NO) produced by the inducible nitric-oxide synthase (iNOS) is responsible for some of the pathophysiological alterations during inflammation. Part of NO-related cytotoxicity is mediated by peroxynitrite, an oxidant species produced from NO and superoxide. Aminoguanidine and mercaptoethylguanidine (MEG) are inhibitors of iNOS and have anti-inflammatory properties. Here we demonstrate that MEG and related compounds are scavengers of peroxynitrite. MEG caused a dose-dependent inhibition of the peroxynitrite-induced oxidation of cytochrome c2+, hydroxylation of benzoate, and nitration of 4-hydroxyphenylacetic acid. MEG reacts with peroxynitrite with a second-order rate constant of 1900 +/- 64 M-1 s-1 at 37 degrees C. In cultured macrophages, MEG reduced the suppression of mitochondrial respiration and DNA single strand breakage in response to peroxynitrite. MEG also reduced the degree of vascular hyporeactivity in rat thoracic aortic rings exposed to peroxynitrite. The free thiol plays an important role in the scavenging effect of MEG. Aminoguanidine neither affected the oxidation of cytochrome c2+ nor reacted with ground state peroxynitrite, but inhibited the peroxynitrite-induced benzoate hydroxylation and 4-hydroxyphenylacetic acid nitration, indicating that it reacts with activated peroxynitrous acid or nitrogen dioxide. Compounds that act both as iNOS inhibitors and peroxynitrite scavengers may be useful anti-inflammatory agents.  相似文献   

3.
Kinetics of peroxynitrite reaction with amino acids and human serum albumin   总被引:1,自引:0,他引:1  
An initial rate approach was used to study the reaction of peroxynitrite with human serum albumin (HSA) through stopped-flow spectrophotometry. At pH 7.4 and 37 degreesC, the second order rate constant for peroxynitrite reaction with HSA was 9.7 +/- 1.1 x 10(3) M-1 s-1. The rate constants for sulfhydryl-blocked HSA and for the single sulfhydryl were 5.9 +/- 0.3 and 3.8 +/- 0.8 x 10(3) M-1 s-1, respectively. The corresponding values for bovine serum albumin were also determined. The reactivity of sulfhydryl-blocked HSA increased at acidic pH, whereas plots of the rate constant with the sulfhydryl versus pH were bell-shaped. The kinetics of peroxynitrite reaction with all free L-amino acids were determined under pseudo-first order conditions. The most reactive amino acids were cysteine, methionine, and tryptophan. Histidine, leucine, and phenylalanine (and by extension tyrosine) did not affect peroxynitrite decay rate, whereas for the remaining amino acids plots of kobs versus concentration were hyperbolic. The sum of the contributions of the constituent amino acids of the protein to HSA reactivity was comparable to the experimentally determined rate constant, where cysteine and methionine (seven residues in 585) accounted for an estimated 65% of the reactivity. Nitration of aromatic amino acids occurred in HSA following peroxynitrite reaction, with nitration of sulfhydryl-blocked HSA 2-fold higher than native HSA. Carbon dioxide accelerated peroxynitrite decomposition, enhanced aromatic amino acid nitration, and partially inhibited sulfhydryl oxidation of HSA. Nitration in the presence of carbon dioxide increased when the sulfhydryl was blocked. Thus, cysteine 34 was a preferential target of peroxynitrite both in the presence and in the absence of carbon dioxide.  相似文献   

4.
The activity of glutamine synthetase (EC 6.3.1.2) from Escherichia coli is regulated by the cyclic adenylylation and deadenylylation of Tyr-397 in each of the enzyme's 12 identical subunits. The nitration of Tyr-397 or of the nearby Tyr-326 by peroxynitrite can convert the unadenylylated enzyme to a form exhibiting regulatory characteristics similar to the form obtained by adenylylation. The adenylylated conformation can also be elicited by the oxidation of surface-exposed methionine residues to methionine sulfoxide. However, the nitration of tyrosine residues and the oxidation of methionine residues are oppositely directed by the presence and absence of CO2. At physiological concentrations of CO2, pH 7.4, nitration occurs but oxidation of methionine residues is inhibited. Conversely, in the absence of CO2 methionine oxidation is stimulated and nitration of tyrosine is prevented. It was further established that adenylylation of Tyr-397 precludes its nitration by peroxynitrite. Furthermore, nitration of Tyr-326 together with either nitration or adenylylation of Tyr-397 leads to inactivation of the enzyme. These results demonstrate that CO2 can alter the course of peroxynitrite-dependent reactions and serve notice that (i) the reactions have physiological significance only if they are shown to occur at physiological concentrations of CO2 and physiological pH; and (ii) the peroxynitrite-dependent nitration of tyrosine residues or the oxidation of methionine residues of metabolically regulated proteins can seriously compromise their biological function.  相似文献   

5.
Peroxynitrite is a powerful oxidant formed in biological systems from the reaction of nitrogen monoxide and superoxide and is capable of nitrating phenols at neutral pH and ambient temperature. This peroxynitrite-mediated nitration is catalyzed by a number of Lewis acids, including CO2 and transition-metal ion complexes. Here we studied the effect of ternary copper-(II) complexes constituted by a 1,10-phenanthroline and an amino acid as ligands. All the complexes studied accelerate both the decomposition of peroxynitrite and its nitration of 4-hydroxyphenylacetic acid at pH > 7. The rate of these reactions depends on the copper complex concentration in a hyperbolic plus linear manner. The yield of nitrated products increases up to 2.6-fold with respect to proton-catalyzed nitration and has a dependency on the concentration of copper complexes which follows the same function as observed for the rate constants. The manganese porphyrin complex, Mn(III)tetrakis(4-benzoic acid)porphyrin [Mn(tbap)], also promoted peroxynitrite-mediated nitration with an even higher yield (4-fold increase) than the ternary copper complexes. At pH = 7.5 +/- 0.2 the catalytic behavior of the copper complexes can be linearly correlated with the pKa of the phenanthroline present as a ligand, implying that a peroxynitrite anion is coordinated to the copper ion prior to the nitration reaction. These observations may prove valuable to understand the biological effects of these transition-metal complexes (i.e., copper and manganese) that can mimic superoxide dismutase activity and, in the case of the ternary copper complexes, show antineoplastic activity.  相似文献   

6.
Nitric oxide (NO) and angiotensin II are natural regulators of blood pressure. Under aerobic conditions, NO is transformed into its higher oxides (N2O4, NO2, NO/NO2 or N2O3) and oxoperoxonitrate (currently named peroxynitrite) by coupling with superoxide. Previous studies have shown that these reactive nitrogen species should be involved in vivo in the transformation of cysteine and tyrosine into the corresponding nitrosothiol and 3-nitrotyrosine. In the present study, attention has been focused on the relative reactivities of HNO2, peroxynitrite, and NO in the presence of dioxygen, towards the arginine and tyrosine residues of the peptide angiotensin II. Nitration of the tyrosine residue is clearly the main reaction with peroxynitrite. By contrast, besides 20% of nitration of the tyrosine residue, NO in the presence of dioxygen leads to nitrosation reactions with the arginine residue similar to those observed with HNO2 at pH 5, possibly through the intermediate N2O3 reactive species. Angiotensin II is converted for the most part to peptides having lost either a terminal amine function or the whole guanido group, leading respectively to citrulline-containing angiotensin II or to a diene derivative. Identification established mainly by tandem mass spectrometry of peptidic by-products allows us to propose a cascade of nitrosations of all the amine functions of the arginine residue. Further in vivo studies show that transformations of the arginine residue in angiotensin II do not alter its vasoconstrictive properties, whereas nitration of the tyrosine residue totally inhibits them.  相似文献   

7.
Ebselen, 2-phenyl-1,2-benzisoselenazol-3(2H)-one, rapidly reacts with peroxynitrite, the rate constant being of the order of 10(6) M-1 s-1; the reaction yields the selenoxide of the parent molecule, 2-phenyl-1,2-benzisoselenazol-3(2H)-one 1-oxide, as the sole selenium-containing product; a stoichiometry of 1 mol of ebselen reacted and of the selenoxide formed per mole of peroxynitrite was observed. The reaction was studied in detail at neutral and alkaline pH (pH 10-11). It also proceeds at acidic pH where peroxynitrous acid (ONOOH) is predominant, the yield of the selenoxide being lower because peroxynitrous acid (pKa = 6.8) decays rapidly. Reduction of the selenoxide in cells to regenerate ebselen would allow for a sustained defense against peroxynitrite. This novel reaction constitutes a potential cellular defense line against peroxynitrite, one of the important reactive species in inflammatory processes.  相似文献   

8.
Nitration of tyrosine residues of proteins has been suggested as a marker of peroxynitrite-mediated tissue injury in inflammatory conditions. The nitration reaction has been extensively studied in vitro by bolus addition of authentic peroxynitrite, an experimental approach hardly reflecting in vivo situations in which the occurrence of peroxynitrite is thought to result from continuous generation of .NO and O-2 at physiological pH. In the present study, we measured the nitration of free tyrosine by .NO and O-2 generated at well defined rates from the donor compound (Z)-1-[N-[3-aminopropyl]-N-[4-(3-aminopropylammonio)butyl]-amino]- dia zen-1-ium-1,2-diolate] (spermine NONOate) and the xanthine oxidase reaction, respectively. The results were compared with the established nitration reaction triggered by authentic peroxynitrite. Bolus addition of peroxynitrite (1 mM) to tyrosine (1 mM) at pH 7.4 yielded 36.77 +/- 1.67 microM 3-nitrotyrosine, corresponding to a recovery of about 4%. However, peroxynitrite formed from .NO and O-2, which were generated at equal rates ( approximately 5 microM x min-1) from 1 mM spermine NONOate, 28 milliunits/ml xanthine oxidase, and 1 mM hypoxanthine was much less efficient (0.67 +/- 0.01 microM; approximately 0.07% of total product flow). At O-2 fluxes exceeding the .NO release rates, 3-nitrotyrosine formation was below the detection limit of the high performance liquid chromatography method (<0.06 microM). Nitration was most efficient (approximately 0.3%) with the .NO donor alone, i.e. without concomitant generation of O-2. Nitration by .NO had a pH optimum of 8.2, increased progressively with increasing tyrosine concentrations (0.1-2 mM), and was not enhanced by NaHCO3 (up to 20 mM), indicating that it was mediated by .NO2 rather than peroxynitrite. Our results argue against peroxynitrite produced from .NO and O-2 as a mediator of tyrosine nitration in vivo.  相似文献   

9.
Glutathione peroxidases and their mimics, e.g., ebselen or diaryl tellurides, efficiently reduce peroxynitrite/peroxynitrous acid (ONOO-/ONOOH) to nitrite and protect against oxidation and nitration reactions. Here, we report the second-order rate constant for the reaction of the reduced form of glutathione peroxidase (GPx) with peroxynitrite as (8.0 +/- 0.8) x 10(6) M-1 s-1 (per GPx tetramer) at pH 7.4 and 25 degreesC. The rate constant for oxidized GPx is about 10 times lower, (0.7 +/- 0.2) x 10(6) M-1 s-1. On a selenium basis, the rate constant for reduced GPx is similar to that obtained previously for ebselen. The data support the conclusion that GPx can exhibit a biological function by acting as a peroxynitrite reductase.  相似文献   

10.
This study is based on a simple chemical interaction of peroxynitrite (O = N-O-O-) and luminol, which produces blue light upon oxidation. Since peroxynitrite has a half-life of about 1 s, a drug known as linsidomine (SIN-1) is used as a peroxynitrite generator. Peroxynitrite can oxidize lipids, proteins and nucleic acids. Upon the stimulation of inflammation and/or infection, macrophages and neutrophils can be induced to produce large amounts of peroxynitrite, which can oxidize phenols and sulphhydryl-containing compounds. Therefore, phenols and sulphhydryls eliminate peroxynitrite. This is an example of the Yin-Yang hypothesis e.g. oxidation-reduction. Acetaminophen (Tylenol) can inhibit fever and some types of pain without being a particularly effective anti-inflammatory. Since it is a phenol, it could act as a nitration target for peroxynitrite. Then peroxynitrite, the possible cause of pain and elevated temperature, might be destroyed in the reaction. Acetaminophen is a phenolic compound which produces a clear inhibitory dose-response curve with peroxynitrite in its range of clinical effectiveness. Whether acetaminophen actually works as we suggest is to be proven. Three different types of reaction could decrease the amount of peroxynitrite: (a) interference with base-catalysed opening of the SIN-1 molecule; (b) destruction of one or both substances needed to form it--superoxide and/or nitric oxide; when the SIN-1 degrades to superoxide and nitric oxide, the former may be destroyed by superoxide dismutase (SOD); (c) peroxynitrite may react directly with phenols (mono-, di-, tri- and tetraphenols), possibly by nitration. Nordihydroguaiaretic acid and 2-hydroxyestradiol (catechol estrogen) are potent inhibitors of luminol light emission. Epineprine, isoproterenol, pyrogallol, catechol and ascorbic acid (a classic antioxidant) are all inhibitors of luminol chemiluminescence. Isoproterenol, norepinephrine/and epinephrine first inhibit light but overall stimulate the light production. Initially, SIN-1 degrades to produce peroxynitrite, which reacts with luminol to produce blue light. If any of three catecholamines are present with the reaction that produces light, there is an initial inhibition of light production, and then a marked stimulation. A possible reason for this is that these catechols are oxidized and the metabolized phenol stimulates the production of light from luminol. Also, during oxidation of catecholamines superoxide is sometimes formed, which could stimulate production of peroxynitrite. This simple screening system is introduced to find useful antioxidants against peroxynitrite.  相似文献   

11.
The SR Ca-ATPase in skeletal muscle SR vesicles isolated from young adult (5 months) and aged (28 months) rats was analyzed for nitrotyrosine. Only the SERCA2a isoform contained significant amounts with approximately one and four nitrotyrosine residues per young and old Ca-ATPase, respectively. The in vitro exposure of SR vesicles of young rats to peroxynitrite yielded selective nitration of the SERCA2a Ca-ATPase even in the presence of excess SERCA1a. No nitration was observed during the exposure of SR vesicles to nitric oxide in the presence of O2. These data suggest the vivo presence of peroxynitrite in skeletal muscle. The greater nitrotyrosine content of SERCA2a from aged tissue implies an age-associated increase in susceptibility to oxidation by this species.  相似文献   

12.
We have examined the reactions of peroxynitrite with short-chain aliphatic aldehydes to model the reaction of the peroxynitrite anion (ONOO-) with CO2. Aldehydes, like CO2, react rapidly with peroxynitrite and catalyze its decomposition. The pH dependence of the reaction is consistent with the addition of ONOO- (not ONOOH) to the carbonyl carbon atom of the free aldehyde forming a 1-hydroxyalkylperoxynitrite anion adduct (5), which structurally resembles the nitrosoperoxycarbonate adduct (1) formed from the reaction of ONOO- with CO2. Intermediate 5, or the secondary products derived from it, decays to give NO3- and regenerated aldehyde, with small but significant yields of H2O2, organic acids, and organic nitrates. In analogy with the peroxynitrite/CO2 system, it is suggested that 5 undergoes homolytic or heterolytic cleavage at the O-O bond, giving a caged radical pair [RCH(OH)O./ .NO2] (7) or intimate ion pair [RCH(OH)O -/+ NO2] (8). The radicals and ions in intermediates 7 and 8 can recombine within the solvent cage to form 1-hydroxyalkylnitrate [RCH(OH)ONO2] (6), which can then dissociate to give nitrate and regenerate the aldehyde. The aldehyde/ peroxynitrite adducts 5-8 mediate the oxidation of 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) but not the nitration of 4-hydroxyphenylacetate. The significance of these findings is discussed in relation to the mechanism(s) of the CO2-catalyzed isomerization of peroxynitrite to nitrate and biological nitrations involving peroxynitrite/CO2 adducts.  相似文献   

13.
14.
Previous studies from our laboratory have demonstrated that the mitochondrial protein manganese superoxide dismutase is inactivated, tyrosine nitrated, and present as higher molecular mass species during human renal allograft rejection. To elucidate mechanisms whereby tyrosine modifications might result in loss of enzymatic activity and altered structure, the effects of specific biological oxidants on recombinant human manganese superoxide dismutase in vitro have been evaluated. Hydrogen peroxide or nitric oxide had no effect on enzymatic activity, tyrosine modification, or electrophoretic mobility. Exposure to either hypochlorous acid or tetranitromethane (pH 6) inhibited (approximately 50%) enzymatic activity and induced the formation of dityrosine and higher mass species. Treatment with tetranitromethane (pH 8) inhibited enzymatic activity 67% and induced the formation of nitrotyrosine. In contrast, peroxynitrite completely inhibited enzymatic activity and induced formation of both nitrotyrosine and dityrosine along with higher molecular mass species. Combination of real-time spectral analysis and electrospray mass spectroscopy revealed that only three (Y34, Y45, and Y193) of the nine total tyrosine residues in manganese superoxide dismutase were nitrated by peroxynitrite. Inspection of X-ray crystallographic data suggested that neighboring glutamate residues associated with two of these tyrosines may promote targeted nitration by peroxynitrite. Tyr34, which is present in the active site, appeared to be the most susceptible residue to peroxynitrite-mediated nitration. Collectively, these observations are consistent with previous results using chronically rejecting human renal allografts and provide a compelling argument supporting the involvement of peroxynitrite during this pathophysiologic condition.  相似文献   

15.
Kinetics and products of peroxynitrite anion O=NOO- reactions, catalyzed by water-soluble manganese and iron porphyrins, were studied under basic and neutral conditions. In the absence of organic substrates peroxynitrite decomposes catalytically to give nitrite and dioxygen as major products. Catalytic decomposition competes with direct oxidation of sulfoxide to sulfone, while phenol is catalytically nitrated in o- and p-positions. A reaction mechanism is proposed.  相似文献   

16.
Cellular defense against excessive peroxynitrite generation is required to protect against DNA strand-breaks and mutations and against interference with protein tyrosine-based signaling and other protein functions due to formation of 3-nitrotyrosine. We recently demonstrated a role of selenium-containing enzymes catalyzing peroxynitrite reduction. Glutathione peroxidase (GPx) protected against the oxidation of dihydrorhodamine 123 (DHR) by peroxynitrite more effectively than ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one), a selenoorganic compound exhibiting a high second-order rate constant for the reaction with peroxynitrite, 2 x 10(6) M-1s-1. The maintenance of protection by GPx against peroxynitrite requires GSH as reductant. Similarly, selenomethionine but not selenomethionine oxide exhibited inhibition of rhodamine 123 formation from DHR caused by peroxynitrite. In steady-state experiments, in which peroxynitrite was infused to maintain a 0.2 microM concentration, GPx in the presence of GSH, but neither GPx nor GSH alone, effectively inhibited the hydroxylation of benzoate by peroxynitrite. Under these steady-state conditions peroxynitrite did not cause loss of 'classical' GPx activity. GPx, like selenomethionine, protected against protein 3-nitrotyrosine formation in human fibroblast lysates, shown in Western blots. The formation of nitrite rather than nitrate from peroxynitrite was enhanced by GPx, ebselen or selenomethionine. The selenoxides can be effectively reduced by glutathione, establishing a biological line of defense against peroxynitrite. The novel function of GPx as a peroxynitrite reductase may extend to other selenoproteins containing selenocysteine or selenomethionine. Recent work on organotellurium compounds revealed peroxynitrite reductase activity as well. Inhibition of dihydrorhodamine 123 oxidation correlated well with the GPx-like activity of a variety of diaryl tellurides.  相似文献   

17.
Peroxynitrite (oxoperoxonitrate(-1)), anion of peroxynitrous acid, is thought to mediate the toxic action of nitric oxide and superoxide anion. Peroxynitrite is formed in a fast reaction between these species, reacts with all classes of biomolecules, is cytotoxic, and is thought to be involved in many pathological phenomena. Its main reactions involve one- and two-electron oxidation and nitration. Protein nitration is often used as a footprint of peroxynitrite reactions in vivo. Nitration of tyrosine and of tyrosyl residues in proteins may be an important mechanism of derangement of biochemical signal transduction by this compound. However, apparently beneficial effects of peroxynitrite have also been described, among them formation of nitric oxide and nitric oxide donors in reactions of peroxynitrite with thiols and alcohols.  相似文献   

18.
Inflammatory processes in chronic rejection remain a serious clinical problem in organ transplantation. Activated cellular infiltrate produces high levels of both superoxide and nitric oxide. These reactive oxygen species interact to form peroxynitrite, a potent oxidant that can modify proteins to form 3-nitrotyrosine. We identified enhanced immunostaining for nitrotyrosine localized to tubular epithelium of chronically rejected human renal allografts. Western blot analysis of rejected tissue demonstrated that tyrosine nitration was restricted to a few specific polypeptides. Immunoprecipitation and amino acid sequencing techniques identified manganese superoxide dismutase, the major antioxidant enzyme in mitochondria, as one of the targets of tyrosine nitration. Total manganese superoxide dismutase protein was increased in rejected kidney, particularly in the tubular epithelium; however, enzymatic activity was significantly decreased. Exposure of recombinant human manganese superoxide dismutase to peroxynitrite resulted in a dose-dependent (IC50 = 10 microM) decrease in enzymatic activity and concomitant increase in tyrosine nitration. Collectively, these observations suggest a role for peroxynitrite during development and progression of chronic rejection in human renal allografts. In addition, inactivation of manganese superoxide dismutase by peroxynitrite may represent a general mechanism that progressively increases the production of peroxynitrite, leading to irreversible oxidative injury to mitochondria.  相似文献   

19.
Flash photolysis of alkaline peroxynitrite solutions results in the formation of nitrogen monoxide and superoxide. From the rate of recombination it is concluded that the rate constant of the reaction of nitrogen monoxide with superoxide is (1.9 +/- 0.2) x 10(10) M-1 s-1. The pKa of hydrogen oxoperoxonitrate is dependent on the medium. With the stopped-flow technique a value of 6.5 is found at millimolar phosphate concentrations, while at 0.5 M phosphate the value is 7.5. The kinetics of decay do not follow first-order kinetics when the pH is larger than the pKa, combined with a total peroxynitrite and peroxynitrous acid concentration that exceeds 0.1 mM. An adduct between ONOO- and ONOOH is formed with a stability constant of (1.0 +/- 0.1) x 10(4) M. The kinetics of the decay of hydrogen oxoperoxonitrate are not very pressure-dependent: from stopped-flow experiments up to 152 MPa, an activation volume of 1.7 +/- 1.0 cm3 mol-1 was calculated. This small value is not compatible with homolysis of the O-O bond to yield free nitrogen dioxide and the hydroxyl radical. Pulse radiolysis of alkaline peroxynitrite solutions indicates that the hydroxyl radical reacts with ONOO- to form [(HO)ONOO].- with a rate constant of 5.8 x 10(9) M-1 s-1. This radical absorbs with a maximum at 420 nm (epsilon = 1.8 x 10(3) M-1 cm-1) and decays by second-order kinetics, k = 3.4 x 10(6) M-1 s-1. Improvements to the biomimetic synthesis of peroxynitrite with solid potassium superoxide and gaseous nitrogen monoxide result in higher peroxynitrite to nitrite yields than in most other syntheses.  相似文献   

20.
The aim of this work was to study the hydroxylation by tyrosinase of 4-t-butylphenol to 4-t-butylcatechol, in the presence of hydrogen peroxide. This hydroxylation reaction does not take place without the addition of hydrogen peroxide. Some properties of this new hydroxylating activity have been analysed. The kinetic parameters of mushroom tyrosinase for hydrogen peroxide (K(m) = 4.9 mM, V(m) = 48.1 microM/min) and 4-t-butylphenol (K(m) = 16 microM/min, V(m) = 6.7 microM/min) were evaluated. A lag period appeared, which was similar to the characteristic lag of monophenolase activity at the expense of molecular oxygen. The length of the lag phase decreased with increasing hydrogen peroxide concentrations but was longer with higher 4-t-butylphenol concentrations. The pH optimum for this hydroxylating activity was close to 5.5. The lag also varied with pH, reaching its highest value at pH 4.8. The lag was shortened by the addition of increasing amounts of 4-t-butylcatechol, and was abolished at 24.5 microM of 4-t-butylcatechol. 4-t-Butylphenol was oxidized by mushroom tyrosinase in the presence of 24.5 microM 4-t-butylcatechol and in the absence of hydrogen peroxide although the enzymatic activity tailed off. The presence of hydrogen peroxide is necessary to maintain a constant steady-state rate of 4-t-butylphenol oxidation by tyrosinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号