首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study is targeted on solar photocatalytic removal of metal ions from wastewater. Photoreductive deposition and dark adsorption of metal ions Cu(II), Ni(II), Pb(II) and Zn(II), using solar energy irradiated TiO2, has been investigated. Citric acid has been used as a hole scavenger. Modeling of metal species has been performed and speciation is used as a tool for discussing the photodeposition trends. Ninety-seven percent reductive deposition was obtained for copper. The deposition values of other metals were significantly low [nickel (36.4%), zinc (22.2%) and lead (41.4%)], indicating that the photocatalytic treatment process, using solar energy, was more suitable for wastewater containing Cu(II) ions. In absence of citric acid, the decreasing order deposition was Cu(II)>Ni(II)>Pb(II)>Zn(II), which proves the theoretical thermodynamic predictions about the metals.  相似文献   

2.
The chemically crosslinked metal-complexed chitosans were synthesized by using the ion-imprinting method from a chitosan with four metals (Cu(II), Zn(II), Ni(II) and Pb(II)) as templates and glutaraldehyde as a crosslinker. The influences of adsorption conditions, including molar ratios of crosslinker/chitosan and pH changes, were studied. They were used to investigate for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in an aqueous medium. They were demonstrated the comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in the orders of the adsorbed amounts with templates: Cu(II) approximately Pb(II)>Zn(II) approximately Ni(II), Zn(II)>Cu(II) approximately Pb(II)>Ni(II), Ni(II)>Pb(II)>Zn(II)>Cu(II) and Pb(II) approximately Cu(II)>Zn(II)>Ni(II), respectively. In addition, the dynamical study showed to be well followed the second-order kinetic equation in the adsorption process. At the same time, the equilibrium adsorption data were fitted in three adsorption isotherm models, namely, Langmuir, Freundlich, and Dubinin-Radushkevich to show very good fits in the Langmuir isotherm equation for the monolayer adsorption process. The most important aspect of the chemically crosslinked metal-complexed chitosans with glutaraldehyde demonstrated to afford a higher adsorption capacity, and a more efficient adsorption toward metals in an aqueous medium.  相似文献   

3.
Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.  相似文献   

4.
The present study proposed the use of meranti sawdust in the removal of Cu(II), Cr(III), Ni(II) and Pb(II) ions from synthetic aqueous solutions. Batch adsorption studies showed that meranti sawdust was able to adsorb Cu(II), Cr(III), Ni(II) and Pb(II) ions from aqueous solutions in the concentration range 1–200 mg/L. The adsorption was favoured with maximum adsorption at pH 6, whereas the adsorption starts at pH 1 for all metal ions. The effects of contact time, initial concentration of metal ions, adsorbent dosage and temperature have been reported. The applicability of Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) isotherm was tried for the system to completely understand the adsorption isotherm processes. The adsorption kinetics tested with pseudo-first-order and pseudo-second-order models yielded high R2 values from 0.850 to 0.932 and from 0.991 to 0.999, respectively. The meranti sawdust was found to be cost effective and has good efficiency to remove these toxic metal ions from aqueous solution.  相似文献   

5.
The crosslinked chitosans synthesized by the homogeneous reaction of chitosan in aqueous acetic acid solution with epichlorohydrin were used to investigate the adsorptions of three metals of Cu(II), Zn(II), and Pb(II) ions in an aqueous solution. The crosslinked chitosan characterized by 13CNMR, SEM, and elemental analysis, and the effects of pH and anion on the adsorption capacity were carried out. The dynamical study demonstrated that the adsorption process was followed the second-order kinetic equation. The results obtained from the equilibrium isotherms adsorption studies of three metals of Cu(II), Zn(II), and Pb(II) ions by being analyzed in three adsorption models, namely, Langmuir, Freundlich, and Dubinnin-Radushkevich isotherm equations, indicated to be well fitted to the Langmuir isotherm equation under the concentration range studied, by comparing the linear correlation coefficients. The order of the adsorption capacity (Qm) for three metal ions was as follows: Cu2+>Pb2+>Zn2+. This technique for syntheses of the crosslinked chitosans with epichlorohydrin via the homogeneous reaction in aqueous acetic acid solution showed that the adsorptions of three metal ions in aqueous solution were followed the monolayer coverage of the adsorbents through physical adsorption phenomena.  相似文献   

6.
The objective of this study was to compare two different Turkish fly ashes (Afsin-Elbistan and Seyitomer) for their ability to remove nickel [Ni(II)], copper [Cu(II)] and zinc [Zn(II)] from an aqueous solution. The effect of contact time, pH, initial metal concentration and fly ash origin on the adsorption process at 20+/-2 degrees C were studied. Batch kinetic studies showed that an equilibrium time of 2h was required for the adsorption of Ni(II), Cu(II) and Zn(II) on both the fly ashes. The maximum metal removal was found to be dependent on solution pH (7.0-8.0 for Ni(II), 5.0-6.0 for Cu(II) and 6.0-7.0 for Zn(II)) for each type of fly ash. With an increase in the concentrations of these metals, the adsorption of Ni(II) and Zn(II) increased while the Cu(II) adsorption decreased on both the fly ashes. Adsorption densities for the metal ions were Zn(II)>Cu(II)>Ni(II) for both the fly ashes. The effectiveness of fly ash as an adsorbent improved with increasing calcium (CaO) content. Adsorption data in the range of pH values (3.0-8.0) using Ni(II) and Cu(II) concentrations of 25+/-2mg/l and Zn(II) concentration of 30+/-2mg/l in solution were correlated using the linear forms of the Langmuir and Freundlich equations. The adsorption data were better fitted to the Langmuir isotherm since the correlation coefficients for the Langmuir isotherm were higher than that for the Freundlich isotherm. The fly ash with high calcium content (Afsin-Elbistan) was found to be a metal adsorbent as effective as activated carbon and, therefore, there are good prospects for the adsorptions of these metals on fly ash with high calcium content in practical applications in Turkey.  相似文献   

7.
Polluted and contaminated water can often contain more than one heavy metal species. It is possible that the behavior of a particular metal species in a solution system will be affected by the presence of other metals. In this study, we have investigated the adsorption of Cd(II), Cu(II), Pb(II), and Zn(II) onto basic oxygen furnace slag (BOF slag) in single- and multi-element solution systems as a function of pH and concentration, in a background solution of 0.01M NaNO(3). In adsorption edge experiments, the pH was varied from 2.0 to 13.0 with total metal concentration 0.84mM in the single element system and 0.21mM each of Cd(II), Cu(II), Pb(II), and Zn(II) in the multi-element system. The value of pH(50) (the pH at which 50% adsorption occurs) was found to follow the sequence Zn>Cu>Pb>Cd in single-element systems, but Pb>Cu>Zn>Cd in the multi-element system. Adsorption isotherms at pH 6.0 in the multi-element systems showed that there is competition among various metals for adsorption sites on BOF slag. The adsorption and potentiometric titrations data for various slag-metal systems were modeled using an extended constant-capacitance surface complexation model that assumed an ion-exchange process below pH 6.5 and the formation of inner-sphere surface complexes at higher pH. Inner-sphere complexation was more dominant for the Cu(II), Pb(II) and Zn(II) systems.  相似文献   

8.
Iminodiacetic acid functionality has been introduced on styrene-divinyl benzene co-polymeric beads and characterized by FT-IR in order to develop weak acid based cation exchange resin. This resin was evaluated for the removal of different heavy metal ions namely Cd(II), Cr(VI), Ni(II) and Pb(II) from their aqueous solutions. The results showed greater affinity of resin towards Cr(VI) for which 99.7% removal achieved in optimal conditions following the order Ni(II)>Pb(II)>Cd(II) with 65%, 59% and 28% removal. Experiments were also directed towards kinetic studies of adsorption and found to follow first order reversible kinetic model with the overall rate constants 0.3250, 0.2393, 0.4290 and 0.2968 for Cr(VI), Ni(II), Pb(II) and Cd(II) removal respectively. Detailed studies of Cr(VI) removal has been carried out to see the effect of pH, resin dose and metal ion concentration on adsorption and concluded that complexation enhanced the chromium removal efficacy of resin drastically, which is strongly pH dependent. The findings were also supported by the comparison of FT-IR spectra of neat resin with the chromium-adsorbed resin.  相似文献   

9.
A method for separation-preconcentration of Pb(II), Cr(III), Cu(II), Ni(II) and Cd(II) ions by membrane filtration has been described. The method based on the collection of analyte metal ions on a cellulose nitrate membrane filter and determination of analytes by flame atomic absorption spectrometry (FAAS). The method was optimized for several parameters including of pH, matrix effects and sample volume. The recoveries of analytes were generally in the range of 93-100%. The detection limits by 3 sigma for analyte ions were 0.02microgL(-1) for Pb(II), 0.3microgL(-1) for Cr(III), 3.1microgL(-1) for Cu(II), 7.8microgL(-1) for Ni(II) and 0.9microgL(-1) for Cd(II). The proposed method was applied to the determination of lead, chromium, copper, nickel and cadmium in tap waters and RM 8704 Buffalo River Sediment standard reference material with satisfactory results. The relative standard deviations of the determinations were below 10%.  相似文献   

10.
Adsorption of metal ions on lignin   总被引:6,自引:0,他引:6  
This study investigated the adsorption of the heavy metal ions Pb(II), Cu(II), Cd(II), Zn(II), and Ni(II) on a lignin isolated from black liquor, a waste product of the paper industry. Lignin has affinity with metal ions in the following order: Pb(II)>Cu(II)>Cd(II)>Zn(II)>Ni(II). The adsorption kinetic data can be described well with a pseudosecond-order model and the equilibrium data can be fitted well to the Langmuir isotherm. Metal ion adsorption was strongly dependent on pH and ionic strength. Surface complexation modelling was performed to elucidate the adsorption mechanism involved. This shows that lignin surfaces contain two main types of acid sites attributed to carboxylic- and phenolic-type surface groups and the phenolic sites have a higher affinity for metal ions than the carboxylic sites.  相似文献   

11.
In this study, the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto inactive Saccharomyces cerevisiae was investigated as a function of initial pH, initial metal ion concentration and temperature. The Langmuir model was applied to experimental equilibrium data of Pb(II), Ni(II) and Cr(VI) biosorption depending on temperature and the maximum metal ions uptake at optimum biosorption temperature of 25 °C, were found to be 270.3, 46.3 and 32.6 mg g−1, respectively. Using the Langmuir constant, b values obtained at different temperatures, the biosorption heats of Pb(II), Ni(II) and Cr(VI) were determined as −1.125, −1.912 and −2.89 kcal mol−1, respectively. The results indicated that the biosorption of Pb(II), Ni(II) and Cr(VI) ions to S. cerevisiae is by the physical adsorption and has an exothermic nature.  相似文献   

12.
The ability of fruit peel of orange to remove Zn, Ni, Cu, Pb and Cr from aqueous solution by adsorption was studied. The adsorption was in the order of Ni(II)>Cu(II)>Pb(II)>Zn(II)>Cr(II). The extent of removal of Ni(II) was found to be dependent on sorbent dose, initial concentration, pH and temperature. The adsorption follows first-order kinetics. The process is endothermic showing monolayer adsorption of Ni(II), with a maximum adsorption of 96% at 50 degrees C for an initial concentration of 50 mg l(-1) at pH 6. Thermodynamic parameters were also evaluated. Desorption was possible with 0.05 M HCl and was found to be 95.83% in column and 76% in batch process, respectively. The spent adsorbent was regenerated and recycled thrice. The removal and recovery was also done in wastewater and was found to be 89% and 93.33%, respectively.  相似文献   

13.
A two in one attempt for the removal of tartrazine and metal ions on activated carbon has been developed. The method was based on the modification of activated carbon with tartrazine then its application for the removal of Pb(II), Cd(II) and Cr(III) ions at different pH values. Tartrazine adsorption data were modelled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacities qm were 121.3, 67 and 56.7mgg(-1) at initial pH values of 1.0, 6.0 and 10, respectively. The adsorption of tartrazine onto activated carbon followed second-order kinetic model. The equilibrium time was found to be 240min at pH 1.0 and 120min at pH 10 for 500mgL(-1) tartrazine concentration. A maximum removal of 85% was obtained after 1h of contact time. The presence of tartrazine as modifier enhances attractive electrostatic interactions between metal ions and carbon surface. The adsorption capacity for Pb(II), Cd(II) and Cr(III) ions has been improved with respect to non-modified carbon reaching a maximum of 140%. The adsorption capacity was found to be a pH dependent for both modified and non-modified carbon with a greater adsorption at higher pH values except for Cr(III). The enhancement percent of Pb(II), Cd(II) and Cr(III) at different pH values was varied from 28% to 140% with respect to non-modified carbon. The amount of metal ions adsorbed using static regime was 11-40% higher than that with dynamic mode. The difference between adsorption capacities could be attributed to the applied flow rate.  相似文献   

14.
The performance of an electrocoagulation system with aluminium electrodes for removing heavy metal ions (Zn2+, Cu2+, Ni2+, Ag+, Cr2O7(2-)) on laboratory scale was studied systematically. Several parameters - such as initial metal concentration, numbers of metals present, charge loading and current density - and their influence on the electrocoagulation process were investigated. Initial concentrations from 50 to 5000 mg L(-1) Zn, Cu, Ni and Ag did not influence the removal rates, whereas higher initial concentrations caused higher removal rates of Cr. Increasing the current density accelerated the electrocoagulation process but made it less efficient. Zn, Cu and Ni showed similar removal rates indicating a uniform electrochemical behavior. The study gave indications on the removal mechanisms of the investigated metals. Zn, Cu, Ni and Ag ions are hydrolyzed and co-precipitated as hydroxides. Cr(VI) was proposed to be reduced first to Cr(III) at the cathode before precipitating as hydroxide.  相似文献   

15.
Removal of trace amounts of heavy metals can be achieved by means of selective ion-exchange processes. The newly developed resins offered a high resin capacity and faster sorption kinetics for the metal ions such as Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) ions. In the present study, the removal of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) ions from aqueous solutions was investigated. Experimental investigations were undertaken using the ion-exchange resin Lewatit CNP 80 (weakly acidic) and were compared with Lewatit TP 207 (weakly acidic and chelating). The optimum pH range for the ion-exchange of the above mentioned metal ions on Lewatit CNP 80 and Lewatit TP 207 were 7.0-9.0 and 4.5-5.5, respectively. The influence of pH, contact time, metal concentration and amount of ion-exchanger on the removal process was investigated. For investigations of the exchange equilibrium, different amounts of resin were contacted with a fixed volume of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) ion containing solution. The obtained sorption affinity sequence in the presented work was Ni(2+)>Cu(2+)>Cd(2+)>Zn(2+)>Pb(2+). The metal ion concentrations were measured by AAS methods. The distribution coefficient values for metal ions of 10(-3)M initial concentration at 0.1mol/L ionic strength show that the Lewatit CNP 80 was more selective for Ni(2+), Cu(2+) than it was for Cd(2+), Zn(2+) and Pb(2+). Langmuir isotherm was applicable to the ion-exchange process and its contents were calculated. The uptake of metal ions by the ion-exchange resins was reversible and thus has good potential for the removal of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) from aqueous solutions. The amount of sorbed metal ion per gram dry were calculated as 4.1, 4.6, 4.7, 4.8, and 4.7mequiv./g dry resin for Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+), respectively. Selectivity increased in the series: Cd(2+)>Pb(2+)>Cu(2+)>Ni(2+)>Zn(2+). The results obtained showed that Lewatit CNP 80 weakly acidic resin had shown better performance than Lewatit TP 207 resin for the removal of metals. The change of the ionic strength of the solution exerts a slight influence on the removal of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+). The presence of low ionic strength or low concentration of NaNO(3) does not have a significant effect on the ion-exchange of these metals by the resins. We conclude that Lewatit CNP 80 can be used for the efficient removal of Pb(2+), Cu(2+), Zn(2+), Cd(2+), and Ni(2+) from aqueous solutions.  相似文献   

16.
A new method using a column packed with Amberlite XAD-2010 resin as a solid-phase extractant has been developed for the multi-element preconcentration of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), and Pb(II) ions based on their complex formation with the sodium diethyldithiocarbamate (Na-DDTC) prior to flame atomic absorption spectrometric (FAAS) determinations. Metal complexes sorbed on the resin were eluted by 1 mol L(-1) HNO3 in acetone. Effects of the analytical conditions over the preconcentration yields of the metal ions, such as pH, quantity of Na-DDTC, eluent type, sample volume and flow rate, foreign ions etc. have been investigated. The limits of detection (LOD) of the analytes were found in the range 0.08-0.26 microg L(-1). The method was validated by analyzing three certified reference materials. The method has been applied for the determination of trace elements in some environmental samples.  相似文献   

17.
Adsorption experiments were carried out using waste rice straw of several kinds as a biosorbent to adsorb Cu(II), Zn(II), Cd(II) and Hg(II) ions from aqueous solutions at room temperature. To achieve the best adsorption conditions the influence of pH and contact time were investigated. The isotherms of adsorption were fitted to the Freundlich equation. Based on the experimental data and Freundlich model, the adsorption order was Cd(II) > Cu(II) > Zn(II) > Hg(II) on the rice straw. This quick adsorption process reached the equilibrium before 1.5 h, with maximum adsorptions at pH 5.0. Thermodynamic aspects of the adsorption process were investigated. The biosorbent material was used in columns for the removal of ions Cu, Zn, Cd and Hg of real samples of industrial effluent and its efficiency was studied.  相似文献   

18.
The synthesis of a terpyridine-based polyimide sorbent for solid-phase extraction (SPE) of some metal ions is described. For this purpose, 5,5'-bis(bromomethyl)-2,2':6',2'-terpyridine was polymerized with the corresponding diimide derivatives of dianhyrides to give polyimides utilizing terpyridine unit in the main chain. This polymer was used for its extraction capabilities for Pb(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II), at different pH. Under competitive conditions and at pH<0.6, the selectivity order was Pb approximately Cd approximately Zn. Enhanced selectivity was observed at pH 3.5, the order was Cu>Ni>Zn approximately Cd approximately Pb. Quantitative recoveries>97% were observed for all metals in case loading was stopped before reaching the point of breakthrough. As the synthesized polyimides are insoluble in water, solid-liquid extractions have been carried out and the resins sorption for mixture of basic and/or precious metals have been studied under various experimental conditions (reaction time and hydrochloric acid concentration).  相似文献   

19.
The isotherms, kinetics and thermodynamics of Cd(II), Zn(II) and Pb(II) biosorption by Penicillium simplicissimum were investigated in a batch system. The effects of pH, initial metal ions concentration, biomass dose, contact time, temperature and co-ions on the biosorption were studied. Adsorption data were well described by both the Redlich–Peterson and Langmuir model. Chemical ion-exchange was found to be an important process based on free energy value from Dubini–Radushkevich isotherm for all metal ions. The results of the kinetic studies of all metal ions at different temperature showed that the rate of adsorption followed the pseudo second-order kinetics well. The thermodynamics constants ΔG°, ΔH° and ΔS° of the adsorption process showed that biosorption of Cd(II), Zn(II) and Pb(II) ions on Penicillium simplicissimum were endothermic and spontaneous.  相似文献   

20.
Sorption of Cd(2+), Cr(3+), Cu(2+), Ni(2+), Pb(2+) and Zn(2+) onto a carboxyl groups-rich material prepared from lemon was investigated in batch systems. The results revealed that the sorption is highly pH dependent. Sorption kinetic data indicated that the equilibrium was achieved in the range of 30-240 min for different metal ions and sorption kinetics followed the pseudo-second-order model for all metals studied. Relative sorption rate of various metal cations was found to be in the general order of Ni(2+)>Cd(2+)>Cu(2+)>Pb(2+)>Zn(2+)>Cr(3+). The binding characteristics of the sorbent for heavy metal ions were analyzed under various conditions and isotherm data was accurately fitted to the Langmuir equation. The metal binding capacity order calculated from Langmuir isotherm was Pb(2+)>Cu(2+)>Ni(2+)>Cd(2+)>Zn(2+)>Cr(3+). The mean free energy of metal sorption process calculated from Dubinin-Radushkevich parameter and the Polanyi potential was found to be in the range of 8-11 kJ mol(-1) for the metals studied showing that the main mechanism governing the sorption process seems to be ion exchange. The basic thermodynamic parameters of metals ion sorption process were calculated by using the Langmuir constants obtained from equilibration study. The DeltaG degrees and DeltaH degrees values for metals ion sorption on the lemon sorbent showed the process to be spontaneous and exothermic in nature. Relatively low DeltaH degrees values revealed that physical adsorption significantly contributed to the mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号