首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
大型转炉炼钢过程的冶金反应   总被引:1,自引:1,他引:0  
研究了宝钢「宝山钢铁(集团)公司」300t转炉炼钢过程中熔池金属成分、炉渣成分、温度的变化以及熔池脱碳、脱磷、脱硫的情况;检测了炉渣的流动温度和岩相结构,分析了渣-钢之间化学反应的平衡状况和氧射流对熔池的作用。研究结果表明:宝钢转炉炼钢工艺基本合理。  相似文献   

2.
通过理论分析结合工业试验,对转炉的脱碳速度及对应的烟气量进行了研究,得出鞍钢180t转炉脱碳速度的经验模型,由此计算出脱碳速度的最大值及相对应的烟气量,结果表明,碳速度与理论计算值基本吻合。为转炉烟气除尘净化系统的改造提供理论依据。  相似文献   

3.
大型转炉炼钢过程的冶金反应   总被引:3,自引:1,他引:2  
研究了宝钢 [宝山钢铁 (集团 )公司 ]30 0 t转炉炼钢过程中熔池金属成分、炉渣成分、温度的变化以及熔池脱碳、脱磷、脱硫的情况 ;检测了炉渣的流动温度和岩相结构 ,分析了渣 -钢之间化学反应的平衡状况和氧射流对熔池的作用。研究结果表明 :宝钢转炉炼钢工艺基本合理  相似文献   

4.
复吹转炉成渣过程是指冶炼过程中炉渣的碱度、氧化性和温度等因素的变化,成渣过程决定炉渣脱磷的效果。炉渣脱磷效果受热力学和动力学条件的影响,化渣脱磷期以改善动力学条件为主,脱碳升温期以改善热力学条件为主。  相似文献   

5.
转炉溅渣护炉的炉渣控制及炉衬侵蚀机理   总被引:3,自引:1,他引:2  
利用副枪在转炉吹炼过程中取样、测温和对炉衬残砖的化学成分、岩相、流动温度的测定结果,研究了宝钢转炉溅渣护炉炉渣的控制及炉衬侵蚀机理。结果表明:转炉终渣MgO含量应控制在10 % 左右、溅渣层的熔损主要发生在炉温较高的吹炼后期,而镁碳砖的侵蚀是由于炉渣渗入镁碳砖的气孔和裂缝中,使其脱碳和渣化,在高温下流入渣层所致。  相似文献   

6.
复吹转炉冶炼高磷铁水的试验研究   总被引:1,自引:1,他引:0  
利用500 kg感应炉热模拟顶底复吹转炉,对w(P)=0.28%~2.02%的铁水进行脱磷预处理和炼钢试验研究,结果表明:脱磷预处理期的脱磷率为67%~86%,至炼钢脱碳试验结束时的脱磷率为86%~97%.影响脱磷率的因素主要是炉渣碱度、供氧速度和熔池温度.  相似文献   

7.
颜根发 《马钢技术》1995,(2):2-6,10
本文探讨了搅拌型复吹转炉脱碳模型的几个基本问题。认为其脱碳临界温度随底部供气强度的增大而降低;最大脱碳速度基本上与顶吹一样,主要取决于顶部供氧强度;临界碳含量随底部供气强度的增大而降低;脱第三期速度系数随底部供气强度的增加而提高。  相似文献   

8.
在统计分析了转炉前期炉渣碱度和钢水温度,终点炉渣碱度、终渣全铁含量和终点钢水温度对脱磷率影响的基础上,优化了0.29%Si,0.085%P铁水180t复吹转炉的高磷钢冶炼工艺。200炉冶炼结果表明,通过使用低枪位使钢水快速脱碳升温,控制前期炉渣碱度≥2.2、终点炉渣碱度2.8~3.2,终点炉渣全铁含量≤17%,转炉出钢温度1 650~1 680℃,可控制脱磷率≤60%,终点钢水磷含量均值为0.035%。  相似文献   

9.
林东  赵成林  张贵玉  彭飞  邹宗树 《钢铁研究》2006,34(6):12-15,24
通过分析复吹转炉脱碳过程的冶金机理,应用冶金热力学、动力学和传输理论,建立描述转炉脱碳过程的动力学模型,确定了模型的有关参数.模型的关键在于正确计算并比较钢液中[C]和[O]的传质速度,找到转炉冶炼脱碳过程的限制环节,并通过一系列热力学计算得到进入钢液的氧在各元素间的分配比例,从而得到转炉中脱碳反应的速度方程.将模型应用于本钢150 t转炉冶炼过程,模型在不同时刻的计算结果与现场实测值吻合较好.  相似文献   

10.
介绍转炉少渣冶炼、炉渣热循环利用实践.可分两个阶段,脱碳出钢留渣、冶炼中期脱磷倒渣留渣与脱碳出钢留渣同时进行(留渣+双渣).脱碳留渣冶炼,通过出钢后倒渣、调渣过程控制,抑制留渣造成吹炼前期的喷溅.留渣冶炼使吨钢石灰消耗降低28.6%.“留渣+双渣”试验,控制转炉前期炉渣碱度及全铁,选择合适脱磷渣倒炉点及温度,保证前期渣脱磷率和泡沫化,最终前期脱磷率大于60%,排渣率大于50%.“留渣+双渣”技术,吨钢石灰消耗降低46.9%.  相似文献   

11.
根据化学分析和矿物组成的特征,对转炉铁钒土、萤石造渣东艺的炉渣变化及形成机理进行了研究。研究结果表明,LD转炉冶炼过程中,炉渣物相组成呈一定规律变化,其变化规律与石灰熔解速度有关同,石灰熔解速度取决于炉内温度及白灰质量和助熔剂的种类。铁钒土造渣完全可以取代萤石造渣,为实现LD转炉采用无萤石造渣工艺提供了必要的依据。  相似文献   

12.
潘贻芳  杜玲 《钢铁》1994,29(8):13-14,12
通过对转炉炉渣的分析,得出在本厂转炉操作条件下,影响转炉炉渣渣化度的因素及炉渣渣经度与炉渣脱硫率的关系。  相似文献   

13.
在分析脱磷机理及炉渣物相的基础上,以首秦公司100t转炉脱磷生产为例,研究了转炉双联脱磷、脱磷脱碳枪脱磷、转炉冶炼加出钢脱磷、三渣法脱磷等几种工艺的转炉深脱磷能力。实践表明:转炉冶炼加出钢脱磷工艺脱磷率最高,达到97.5%,脱磷后w(P)能达到0.002%;三渣法脱磷符合生产条件,在铁水w(P)达到0.150%的条件下,脱磷率达到96.7%,能有效降低冶炼成本。  相似文献   

14.
转炉留渣双渣工艺两阶段脱磷对比   总被引:1,自引:0,他引:1  
王林珠  包燕平  李翔 《钢铁》2019,54(8):37-42
 为了获得两阶段脱磷的关键工艺参数,通过统计100 t转炉留渣双渣工艺生产数据,比较了脱磷及脱碳阶段的脱磷有利条件,研究结果表明,两阶段脱磷条件对脱磷效果的影响规律存在显著差异,脱磷阶段炉渣碱度为1.8~2.2、Fe2O3质量分数为23%~28%、钢液温度为1 350~1 400 ℃时,可获得最优的脱磷效果;脱碳阶段炉渣碱度为3.2~5.2、Fe2O3质量分数为18%~30%、钢液温度为1 600~1 700 ℃时,提高炉渣碱度及Fe2O3质量分数或降低钢液温度可获得更优的脱磷效果;脱磷、脱碳阶段都没有达到热力学平衡,但脱磷阶段与热力学平衡差距更大,脱碳阶段更接近热力学上的平衡。  相似文献   

15.
超低碳钢的转炉终点控制   总被引:1,自引:0,他引:1  
李朋欢  包燕平  岳峰  黄杰 《钢铁》2011,46(10):27-31
 通过对国内某厂300t转炉终点相关数据的理论分析,发现影响转炉终点水平的有:转炉炉龄、转炉终点温度以及吹氧量等。转炉吹炼过程中存在一个临界碳含量。当转炉终点碳含量低于临界碳含量时,脱碳变得困难,钢水过氧化严重。采用规则溶液模型计算转炉渣中FeO的活度,据此计算的临界碳含量(质量分数)为0.02%~0.03%。根据理论分析和实际统计结果,300t转炉理想的终点碳质量分数为0.03%~0.05%。  相似文献   

16.
转炉供氧强度大小的选择主要取决于它的喷溅情况,同时还应考虑原料状况、冶炼钢种、炉容比、转炉排烟能力等条件,通常在无喷溅的前提下应尽量使用较大的供氧强度。提高转炉供氧强度能缩短吹氧时间,增加钢产量,强化氧射流与熔池的作用,加快脱碳速度、成渣速度和熔池升温速度,减少氧气消耗,提高转炉炉龄。  相似文献   

17.
彭家清 《河南冶金》2006,14(Z1):61-63
转炉炼钢过程中,炉渣氧化性直接影响吹炼过程中的化渣速度、炉渣粘度、喷溅情况等.通过实验,分析了炉渣粘度、钢水碳锰含量、温度对炉渣氧化性的影响.  相似文献   

18.
转炉煤气作为炼钢过程的副产品,是重要的二次能源和清洁能源,提高转炉煤气回收率是负能炼钢和降低工序能耗的重要环节,是一项重要节能减排工作。由于COREX-3000铁水成分波动,易造成转炉喷溅,影响转炉煤气的正常回收,因此,为了稳定煤气回收并减少高硅铁水冶炼的喷溅问题,研究了如何减缓化学反应速率和提高强脱碳期炉渣熔点,探索了高硅铁水冶炼模式和操作要领;同时,结合罗泾煤气回收生产实际经验,为减少铁水成分对煤气含量波动的影响,分时段控制煤气回收、优化了回收连锁条件,罗泾转炉煤气回收取得良好效果。  相似文献   

19.
王星  胡显堂  危尚好  周冬升  王东  刘敏 《钢铁》2022,57(11):53-63
 转炉具备冶炼低磷钢的生产能力,但生产超低磷9Ni钢,转炉脱磷工艺仍然是主要难点和研究重点。分析了钢水温度、炉渣碱度、FeO和渣量等对转炉脱磷的影响规律,并结合现场工装设备条件,对转炉双联法、三渣法、双渣法3种脱磷模式进行试验对比。双联脱磷工艺半钢温降大、单炉周期长、生产组织难度大,三渣法操作过程复杂、终点磷控制优势不明显。双渣法冶炼周期短,通过优化转炉脱磷工艺,实现了采用双渣法冶炼工艺生产超低磷钢,简化了超低磷钢转炉冶炼流程,提高了生产效率。研究了转炉脱磷主要工艺参数,分析得出采用脱碳氧枪喷头时,供氧流量按脱碳吹炼流量的83.5%控制,可达到良好的脱磷效果并减少铁水碳的烧损;脱磷期半钢碳含量不宜控制过低,半钢碳质量分数为3.0%~3.5%时能保证前期的脱磷效果和脱碳期的热量。脱磷期温度控制在1 300~1 350 ℃,脱磷率较高也有利于炉渣熔化。炉渣碱度为1.8~2.2时,可保证较高的脱磷率和化渣效果。一次倒渣量40%以上,脱碳期终点温度按1 590~1 610 ℃控制,终渣FeO质量分数不小于20%,终渣碱度大于6,转炉终点磷质量分数可降低到0.002%以下。采用下渣检测系统和滑板挡渣操作,严格控制下渣量,出钢采用磷含量低的合金,炉后钢水增磷可控制在小于0.000 5%。通过工业试验,实现了铸机成品磷质量分数小于0.002%。  相似文献   

20.
转炉底部供气吹炼工艺试验结果表明,转炉冶炼过程中,脱磷、脱硫效果好,化渣快,吹炼平稳,脱碳和升温均衡协调,平均炉龄达3277次,供气砖的浸蚀速度为0.1mm/炉。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号