首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) are emitted into the atmosphere mostly by anthropogenic combustion sources. Because of their carcinogenic and mutagenic properties, PAHs are often analyzed in air quality measurements. Atmospheric concentrations of PAHs, typically in the nanograms-per-cubic-meter range, require significant effort for sample collection and processing when conventional methods such as gas chromatography/mass spectrometry (GC/MS) or liquid chromatography/mass spectrometry are used. In contrast, two-step laser mass spectrometry (L2MS) is highly sensitive and selective for PAHs and requires almost no sample preparation. Here, we present for the first time a method based on L2MS to quantify PAHs adsorbed on aerosol particles collected on a filter. Linear ranges for quantitation were determined for five different PAHs in the mass range of 178-276 Da (i.e., phenanthrene, pyrene, chrysene, benzo[e]pyrene, benzo[ghi]perylene) covering more than 2 orders of magnitude with detection limits between 50 and 300 pg of a single PAH on a whole filter sample. A quantitative comparison with GC/MS was performed using model aerosols consisting of benzo[e]pyrene adsorbed on inorganic salt aerosol particles. On average, 25% less benzo[e]pyrene was determined with GC/MS than with L2MS, with a variability between the two methods of +/-68%. The general lower amount measured with GC/MS is attributed to losses during the sample preparation for the GC/MS measurements.  相似文献   

2.
Ali MY  Cole RB 《Analytical chemistry》1998,70(15):3242-3248
Lipid material represents a potential interference for determination of nonpolar compounds (e.g., polycyclic aromatic hydrocarbons) in biological tissue samples. This study reports the development of a selective extraction method using supercritical CO2 that allows the GC/MS quantitation of PAHs in the presence of a substantial lipid background. Selective extraction of PAHs relies upon addition of C18 adsorbent beads to the initial sample slurry. The dried mixture, including C18 adsorbent, is placed in the supercritical fluid extraction (SFE) chamber. During the SFE process, lipids are preferentially retained on the C18 beads. This "SFE plus C18" procedure was developed by first optimizing SFE conditions (100 degrees C, 350 bar) for recovery of PAH standards. PAHs containing added model lipid compounds (stearic acid and cholesterol) were then subjected to SFE plus C18 treatment followed by GC/MS analysis. Using this approach, a recovery of 94-100% of PAHs was obtained while only 9-17% of the lipid material present was coextracted from the same test sample. The developed method is demonstrated to permit efficient recovery and detection of PAHs spiked into crab tissue, a matrix with a high lipid content.  相似文献   

3.
The applicability of two-step laser mass spectrometry (L2MS) to the analysis of water contaminants and environmental water samples is demonstrated. First, the ionization characteristics of a selection of naphthyl and carbamate pesticides and of phenol were determined. The ion signal of all compounds increased with ionization laser pulse energy, within the investigated range (20-200 microJ). Ion yields relative to an internal standard, benz[alanthracene, reached 30% for naphthyl pesticides ionized at 225 nm and 2-8% at 266 nm. At 266 nm, similar relative ion yields were found for phenol. Carbamate pesticides showed lower relative ion yields at all wavelengths, by a factor of approximately 10-100, but higher relative ion yields, on the order of 1%, were obtained when using short (ps) laser pulses for ionization. These data allow one to estimate the detection limits of these analytes in a variety of matrixes once they are known for one of the compounds. Second, the quantitative analysis of carbaryl, phenol, and polycyclic aromatic hydrocarbons in rainwater is demonstrated. The aqueous samples were frozen to permit direct L2MS analysis of organic pollutants without tedious sample preparation. Detection limits were in the low-microgram per liter concentration range and recoveries of phenol from spiked rainwater samples were above 90%. The specific advantages are exemplified with the investigation of dynamic washout processes of atmospheric organic pollutants with a resolution of 0.01 mm of precipitation.  相似文献   

4.
Zhang S  Du Z  Li G 《Analytical chemistry》2011,83(19):7531-7541
A new fabrication strategy of the graphene-coated solid-phase microextraction (SPME) fiber is developed. Graphite oxide was first used as starting coating material that covalently bonded to the fused-silica substrate using 3-aminopropyltriethoxysilane (APTES) as cross-linking agent and subsequently deoxidized by hydrazine to give the graphene coating in situ. The chemical bonding between graphene and the silica fiber improve its chemical stability, and the obtained fiber was stable enough for more than 150 replicate extraction cycles. The graphene coating was wrinkled and folded, like the morphology of the rough tree bark. Its performance is tested by headspace (HS) SPME of polycyclic aromatic hydrocarbons (PAHs) followed by GC/MS analysis. The results showed that the graphene-coated fiber exhibited higher enrichment factors (EFs) from 2-fold for naphthalene to 17-fold for B(b)FL as compared to the commercial polydimethylsioxane (PDMS) fiber, and the EFs increased with the number of condensed rings of PAHs. The strong adsorption affinity was believed to be mostly due to the dominant role of π-π stacking interaction and hydrophobic effect, according to the results of selectivity study for a variety of organic compounds including PAHs, the aromatic compounds with different substituent groups, and some aliphatic hydrocarbons. For PAHs analysis, the graphene-coated fiber showed good precision (<11%), low detection limits (1.52-2.72 ng/L), and wide linearity (5-500 ng/L) under the optimized conditions. The repeatability of fiber-to-fiber was 4.0-10.8%. The method was applied to simultaneous analysis of eight PAHs with satisfactory recoveries, which were 84-102% for water samples and 72-95% for soil samples, respectively.  相似文献   

5.
A GC method using phase-transfer catalysis for the simultaneous derivatization, extraction, and preconcentration of the highly polar cyanuric acid (CYA) was developed. The method was based on the extractive N-methylation of the analyte of concern in two- and three-phase systems, whereby the 1,3,5-trimethyl-1,3,5-triazine-2,4,6-(1H,3H,5H)trione was formed. Subsequent detection was performed using flame thermoionic specific detection (FTD) and mass spectrometry (MS) selective-ion monitoring (SIM) using electron impact. The optimal experimental conditions related to pH, kind of catalyst and solvents, methyl iodide concentration, phase volumes, reaction time, temperature, and agitation were suitably established. Inter alia, the resulting method is highly sensitive, almost free from interferences, and was easily applied to the determination of cyanuric acid in swimming pool water, surface water, human urine, and simulated air filter samples. The minimal quantitable concentration was found to be less than 1 and 90 microg L(-1) using GC-MS-(SIM) and GC-FTD, respectively. The overall precision for the workup procedure did not exceed 3.6% (n = 6) for 5.0 microg L(-1) CYA-spiked urine and river water while the respective value for the same matrixes spiked at a concentration of 200 microg L(-1) was calculated to be in the range 1.9-4.0% (n = 6). The overall recovery from spiked samples was 98 +/- 5% for microgram per liter levels of CYA. A kinetic study conducted was helpful to get a better insight into the N-methylation reaction mechanism.  相似文献   

6.
反相高效液相色谱法测定土壤中的十五种多环芳烃   总被引:1,自引:1,他引:0  
本文采用超声披提取、悌度冼脱及二极管阵列检测器和荧光检测器联用的反相高效液相色谱法测定土壤中的多环芳烃,方法简单、快速、准确、灵敏度高,能满足土壤中PAHs的检测要求。对15种PAHs,其荧光检测器的检测限介于0.01—50ng/mL之间,RSD介于2.3%~7.9%之间,回收率介于75%~90%之间。  相似文献   

7.
Passive sampling with nondepletive sorbents is receiving increasing interest because of its potential to measure freely dissolved concentrations of hydrophobic organic compounds (HOCs) at very low concentrations, as well as its potential for both laboratory use and field deployment. However, consistent approaches have yet to be developed for the majority of HOCs of environmental and regulatory interest. In the present study, a passive sampling method was developed which allows the freely dissolved concentrations of 18 parent and 16 groups of alkyl polycyclic aromatic hydrocarbons (PAHs) on the U.S. Environmental Protection Agency (USEPA)'s "PAH-34" target compound list to be measured. Commercially available 76-μm-thick polyoxymethylene (POM) was placed in sediment/water slurries and exposed for up to 126 days, with 28 days found to be sufficient to obtain equilibrium among the sediment, water, and POM phases for the target 2- to 6-ring PAHs. The POM/water partition coefficients (K(POM)) necessary to calculate freely dissolved concentrations for parent PAHs were determined in two separate laboratories (one using pure standards, and the other using coal tar/petroleum-contaminated sediments) and agreed very well. Since the so-called "16" alkyl PAHs on the PAH-34 list actually include several hundreds of isomers for which no standards exist, sediments impacted by coal tar, or spiked with a coal tar/petroleum nonaqueous phase liquid (NAPL) were also used to measure K(POM) values for each alkyl PAH cluster. The log K(POM) values ranged from ca. 3.0 to 6.2 for 2- to 6-ring parent PAHs, and correlated well with SPARC octanol/water coefficients (K(OW)) (correlation coefficient of r(2) = 0.986). However, log K(POM) values for alkyl PAHs deviated increasingly from SPARC log K(OW) values with increasing degree of alkylation. A simple empirical model that incorporates the number of carbon atoms in a PAH gave a better fit to the experimental log K(POM) values, and was used to estimate log K(POM) for alkyl PAHs that could not be directly measured. Detection limits (as freely dissolved concentrations) ranged from ca. 1 part per trillion (ng/L) for the 2-ring PAH naphthalene, down to <1 pg/L (part per quadrillion) for the 5- and 6-ring PAHs. Sorption isotherms were linear (r(2) > 0.99) over at least 4 orders of magnitude.  相似文献   

8.
A solid-phase microextraction (SPME) procedure for the simultaneous determination of volatile alkanethiols (i.e., methane-, ethane-, propanethiol) and dihydrogen sulfide in aqueous samples as stable thioethers followed by GC/MS determination was developed. Accordingly, N-ethylmaleimide as derivatization reagent in the aqueous phase was used for the first time, improving the analyte stability and method sensitivity in comparison to the determination of free forms. Thus, pH of the aqueous medium, reaction time, and derivatization reagent concentration have been evaluated, and the main parameters affecting the SPME process (i.e., coating selection, extraction mode and time profile, extraction and desorption temperatures) optimized. At the selected derivatization and extraction conditions, the proposed method provided no matrix effect either in the derivatization reaction or in the microextraction steps. RSD values were lower than 11% and LODs from 0.74 to 5.2 ng L(-1). The developed procedure was successfully applied to different water and wastewater samples, where dihydrogen sulfide and some of the target alkanethiols were identified at low-microgram per liter concentrations.  相似文献   

9.
The first method for the determination of commonly used corrosion inhibitors in environmental water samples by liquid chromatography-electrospray ionization-tandem mass spectrometry is presented. Benzotriazole (BTri) and the two isomers of tolyltriazole (5- and 4-TTri) are separated in an isocratic run. By gradient elution, BTri, 4-TTri, 5-TTri, and xylyltriazole can be determined simultaneously with three benzothiazoles, but here TTri isomers coelute. The instrumental detection limit of 2 pg allows the determination of the three most important benzotriazoles from municipal wastewater and most surface waters by direct injection into the HPLC system without previous enrichment. When solid-phase extraction is employed with mean recovery rates of 95-113%, the limit of quantification for benzotriazoles range from 10 ng/L in groundwater to 25 ng/L in untreated wastewater. BTri and TTri were determined in municipal wastewater in microgram per liter concentrations. Elimination in wastewater treatment appears to be poor, and BTri and TTri can be followed through a water cycle from treated municipal wastewater through surface water to bank filtrate used for drinking water production. The TTri isomers show markedly different biodegradation behavior with 4-TTri being more stable.  相似文献   

10.
In this study, expanded titanium (Ti) covered with ruthenium oxide (RuO(2)) electrode was used to anodically oxidize polycyclic aromatic hydrocarbons (PAH) in creosote solution. Synthetic creosote-oily solution (COS) was prepared with distilled water and a commercial creosote solution in the presence of an amphoteric surfactant; Cocamidopropylhydroxysultaine (CAS). Electrolysis was carried out using a parallelepipedic electrolytic 1.5-L cell containing five anodes (Ti/RuO(2)) and five cathodes (stainless steel, 316 L) alternated in the electrode pack. The effects of initial pH, temperature, retention time, supporting electrolyte, current density and initial PAH concentration on the process performance were examined. Experimental results revealed that a current density of 9.23 mA cm(-2) was beneficial for PAH oxidation. The sum of PAH concentrations for 16 PAHs could be optimally diminished up to 80-82% while imposing a residence time in the electrolysis cell of 90 min. There was not a significant effect of the electrolyte (Na(2)SO(4)) concentration on oxidation efficiency in the investigated range of 500-4000 mg/L. However, an addition of 500 mg Na(2)SO(4)L(-1) was required to reduce the energy consumption and the treatment cost. Besides, there was no effect of initial PAH concentration on oxidation efficiency in the investigated range of 270-540 mg PAHL(-1). Alkaline media was not favourable for PAH oxidation, whereas high performance of PAH degradation could be recorded without initial pH adjustment (original pH around 6.0). Likewise, under optimal conditions, 84% of petroleum hydrocarbon (C(10)-C(50)) was removed, whereas removal yields of 69% and 62% have been measured for O&G and COD, respectively. Microtox and Daphnia biotests showed that electrochemical oxidation using Ti/RuO(2) could be efficiently used to reduce more than 90% of the COS toxicity.  相似文献   

11.
In many analytical techniques, 1+1 resonance-enhanced multiphoton ionization (1+1 REMPI) is used because it is an efficient and optically selective soft ionization method. While 1+1 REMPI of jet-cooled molecules has been extensively studied, little has been reported so far about this mechanism as it is used in analytical techniques, that is, in the cases where the molecules are not jet-cooled and where widely varying ionization wavelengths are employed. We used two-step laser mass spectrometry (L2MS) to study the wavelength (238-310 nm) dependence and the laser pulse energy dependence of the ion yield for 17 polycyclic aromatic hydrocarbons (PAHs). We discuss how these data allow prediction of the efficiency of 1+1 REMPI for a given compound. These advances open new perspectives for better understanding the L2MS spectra obtained directly from complex mixtures such as environmental samples.  相似文献   

12.
The aim of the study was to optimise three different treatment methods and to find out if the integration of soil washing, ozonation and biological treatment could be a feasible method for the remediation of aged oil contaminated with PAHs. Three different ozone doses and soil washing were studied in different pHs in order to assess their effect to the degradation and enhancement of biodegradability of PAH in the soil and water phase. Main target of the study was to find out a method with which the PAH concentrations could be decreased below the Finnish guideline level for total PAHs. In this case, the initial concentration of PAHs was 1200 mg kg(-1) and therefore almost 85% degradation of PAHs was required. Any of the methods studied was not able to reach this target level alone, but by several combinations of the methods studied achieved 90% reduction of PAHs. The consumption of ozone was 5-10 times lower in the integrated treatments of soil washing, ozonation and biological treatment than without prewashing.  相似文献   

13.
Diagnosing and treating anthrax at the earliest stage of disease is critical. We developed a method to diagnose anthrax at early stages of infection by detecting anthrax lethal factor (LF) at the attomol/mL level in plasma or serum. This method uses antibody capture and quantification of LF endoproteinase activity by isotope dilution matrix-assisted laser-desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS). Many public health laboratories do not use MALDI-TOF-MS; thus, we have adapted the LF method for detection by electrospray ionization (ESI) tandem MS (MS/MS), which allowed comparison of both MS platforms for LF quantification. Calibration curves were linear from 0.05-2.5 ng/mL when measured after 2 h and from 0.005-1.0 ng/mL after 18 h incubation time. The limit of detection was 0.005 ng/mL using a 200 μL sample. The coefficient of variation for quality control samples was 6-12% for both MS platforms. Samples used to perform cross-validation included 158 serum samples from a study in rabbits exposed to anthrax spores by inhalation. Some were treated with anthrax immune globulin before exposure. Concentrations measured by ESI-MS/MS matched those by MALDI-TOF-MS with p = 0.99 (r(2) = 0.997) and -0.25% mean relative difference (±9% standard deviation). This study shows that isotope dilution MALDI-TOF-MS is a robust and precise quantitative MS platform.  相似文献   

14.
A simple and rapid method is presented for the trace-level analysis of 10 polar pharmaceutical residues in various types of water samples from the aquatic environment. Using this method, the pharmaceuticals and several drug metabolites can be analyzed in drinking and surface waters and in wastewater (treated and untreated sewage) at concentrations down to 0.01 microg/L. Samples are prepared by a simple in situ derivatization enabling the preconcentration of very polar metabolites by automated solid-phase extraction. The analytes were separated by liquid chromatography with tandem mass spectrometric detection and quantified by comparison with an internal standard. Limits of quantification were between 0.01 and 0.02 microg/L for three phenazone-type pharmaceuticals, six of their metabolites, and the antiepileptic drug carbamazepine. Except for dimethylaminophenazone, recoveries for all analytes were between 87 and 117% for raw and purified sewage, groundwater, and surface and drinking water. Investigations of some environmental samples revealed that sewage and surface water treatment causes a slight reduction of the concentrations of some analytes whereas other compounds were persistent during water treatment. Thus, some compounds were detected at the low-microgram per liter level in sewage effluents of wastewater treatment plants in Berlin (Germany) and were also found at high-nanogram per liter concentrations in Berlin surface water samples.  相似文献   

15.
An automatic method has been developed for the estimation of organic amino nitrogen (CH2-NH) and ammonium in water samples. We propose a continuous flow system in which nitrogen compounds react with hypochlorite reagent to produce chloramines. Subsequently, the mixture is mixed with luminol, generating a chemiluminescence signal. The signal emission at 425 nm, registered as a function of time, decreases as nitrogen concentration increases, due to the decrease on hypochlorite concentration. A large number of nitrogen compounds have been assayed and their sensitivities compared, in milligrams per liter nitrogen. The ammonium calibration graph, expressed as N, can be used for most of the assayed compounds. The linear interval was 0.24-4 mg L(-1) N, with the detection limit 0.07 mg L(-1) N. The chemiluminescence method was applied to the analysis of several kinds of real water samples, natural, lake, irrigation ditch, fountain, residual, and seawater in order to detect possible sources of eutrophication. The accuracy (% relative error) and precision were satisfactory, with mean values of 5 +/- 4 and 3 +/- 2, respectively. This procedure has been used to estimate nitrogen content in samples before and after Kjeldahl treatment. In the same samples, the N found for the untreated samples provided a good estimation of the N Kjeldahl. Sixty samples per hour can be analyzed, and the procedure can also be used for in situ monitoring.  相似文献   

16.
Fung YS  Wu Z  Dao KL 《Analytical chemistry》1996,68(13):2186-2190
A sensitive method for determining total organic carbon at microgram per liter levels in industrial, environmental, and drinking waters by thermal combustion ion chromatography was developed using tube furnace and readily accessable HPLC equipment. To achieve complete oxidation, persulfate (0.25%) was added to oxidize nonvolatile organic compounds in solution and cupric oxide heated at 900 °C to convert volatile organic compounds to CO(2), which was scrubbed in a 20 mL solution of 50 mM KOH with 10 drops of butanol added. The carbonate anion obtained was determined by nonsuppressed ion chromatography using 0.6 mM potassium hydrogen phthalate (KHP) as the eluent. Both surfactants and volatile and nonvolatile organic compounds commonly found in environmental waters give highly repeatable recoveries close to 100%. The detection limit (S/N = 2) and linear range for a 1 L water sample are 2 μg of C L(-)(1) and 10-2500 μg of C L(-)(1), respectively, and they can be adjusted using samples ranging from 100 mL to 2 L. Good repeatablity (RSD less than 10%) and close to 100% recoveries were obtained for KHP added to real samples such as deionized, mineral, tap, and river water and seawater. Compared with the ASTM D2579 method, the method developed is 3 orders of magnitude more sensitive, more accurate, and reliable in determining samples with low total organic carbon values and more flexible in adjusting the linear range and sensitivity using variable sample sizes.  相似文献   

17.
A way to extract useful chemical information from the volatile profile provided by a headspace-mass spectrometer (HS-MS) is developed in order to improve sensitivity in HS-MS analysis. The methodology is based on the selection of a narrow window in the volatile profile where the signal-to-noise ratio was maximal by combining the data acquisition time and scan rate. To test this approach, benzene, toluene, ethylbenzene, and p-xylene (BTEX) as well as their mixtures were quantified in drinking waters. Individual hydrocarbons were determined between 1 and 30 microg/L (mean RSD, 4.0% for 10 microg/L) while mixtures were quantified at a microgram per liter level by using the partial least-squares multivariate algorithm with a relative standard prediction error of under 3.5%. These results indicate that the method proposed is useful as a sensitive and selective tool for the determination of BTEX and surpasses other reported HS-MS alternatives. In addition, the proposed methodology can be extended to others that insert analytes from a sample directly into a MS, such as membrane introduction mass spectrometry among others.  相似文献   

18.
Li X  Wang H  Sun W  Ding L 《Analytical chemistry》2010,82(22):9188-9193
Current direct analysis methods in mass spectrometry (MS) are predominantly focused on desorbing and ionizing samples in the solid phase. Some sampling difficulties are associated with liquid (solution) or gas samples. The present study has expanded direct MS analysis to solution samples by using the desorption corona beam ionization (DCBI) technique in combination with poly(dimethylsiloxane) (PDMS) substrate sampling. Typically, the PDMS substrate is dipped in water for microextraction of pesticide compounds and then is transferred to an MS ion source for desorption and ionization. This approach improves the detection limit for DCBI and allows more organic compounds in complex mixtures to be identified within seconds. The practical application of this device is demonstrated by identifying five pesticides (acephate, isoprocarb, dimethoate, dichlorvos, and dicofol) in water. The obtained detection limits of pesticides are 1 μg/L, the measured dynamic ranges are 3 orders of magnitude, the calculated correlation coefficients are between 0.939 and 0.979 at concentration levels of 5-5000 μg/L, and the repeatabilities defined as a relative standard deviation of five successive injections are in the range of 13-17%. The results indicate that the DCBI technique coupled with PDMS sampling is an excellent method for the analysis of organic pesticides in solution, and it also opens up a new avenue for direct MS studies of solution samples with general importance.  相似文献   

19.
Municipal solid waste incinerator (MSWI) fly ash was regarded as a hazardous material because concentrations of TCLP leaching solution exceeded regulations. Previous studies have investigated the characteristics of thermally treated slag. However, the emissions of pollutant during the thermal treatment of MSWI fly ash have seldom been addressed. The main objective of this study was to evaluate the emission of Pb and PAHs from thermally co-treated MSWI fly and bottom ash process. The experimental parameters included the form of pretreatment, the proportion of bottom ash (bottom ash/fly ash, B/F=0, 0.1 and 1) and the retention time. The toxicity of thermally treated slag was also analyzed. The results indicated that (1) Pb emission occurred only in the solid phase and that PAHs were emitted from both solid and gas phases during thermal treatment process. (2) Washing pretreatment reduced not only the TCLP leaching concentration of Pb (from 15.75 to 1.67 mg/L), but also the emission of PAHs from the solid phase during thermal treatment process. (3) Adding bottom ash reduced the TCLP leaching concentration of thermally treated slag. (4) The concentration of Pb emission increased with retention time. (5) The thermal treatment reduced the toxicity of raw fly ash effectively, the inhibition ratio of raw fly ash and thermal treated slag were 98.71 and 18.35%, respectively.  相似文献   

20.
The production and use of polymeric materials worldwide has reached levels of 150 million tonnes per year, and the majority of plastic materials are discarded in waste landfills where are burned generating toxic emissions. In the present study we conducted laboratory experiments for batch combustion/burning of commercial polymeric materials, simulating conditions of open fire combustion, with the purpose to analyze their emissions for chemical characteristics of toxicological importance. We used common types of plastic materials: poly(vinyl chloride) (PVC), low and high density poly(ethylene) (LDPE, HDPE), poly(styrene) (PS), poly(propylene) (PP) and poly(ethylene terephthalate) (PET). Samples of particulate smoke (soot) collected on filters and residue solid ash produced by controlled burning conditions at 600-750 degrees C are used for analysis. Emissions of particulate matter, persistent free radicals embedded in the carbonaceous polymeric matrix, heavy metals, other elements and PAHs were determined in both types of samples. Results showed that all plastics burned easily generating charred residue solid ash and black airborne particulate smoke. Persistent carbon- and oxygen-centered radicals, known for their toxic effects in inhalable airborne particles, were detected in both particulate smoke emissions and residue solid ash. Concentrations of heavy metals and other elements (determined by Inductively Coupled Plasma Emission Spectrometry, ICP, method) were measured in the airborne soot and residue ash. Toxic heavy metals, such as Pb, Zn, Cr, Ni, and Cd were relatively at were found at low concentrations. High concentrations were found for some lithophilic elements, such as Na, Ca, Mg, Si and Al in particulate soot and residue solid ash. Measurements of PAHs showed that low molecular weight PAHs were at higher concentrations in the airborne particulate soot than in the residue solid ash for all types of plastic. Higher-ringed PAHs were detected at higher concentrations in the residue solid ash of PVC as compared to those from the other types of plastic. The open-air burning of plastic material and their toxic emissions is of growing concern in areas of municipal solid waste where open-fires occur intentionally or accidentally. Another problem is building fires in which victims may suffer severe smoke inhalation from burning plastic materials in homes and in working places.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号