首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
碘化铅(PbI2)是两步法制备钙钛矿薄膜最常使用的金属卤化物前驱体,精确控制PbI2在钙钛矿薄膜中的含量和空间分布以及优化PbI2薄膜的形貌结构对于制备高效稳定的太阳电池具有重要意义。探索了PbI2的浓度和退火方式对钙钛矿薄膜及太阳电池性能的影响。研究发现,PbI2溶液的浓度不仅决定钙钛矿薄膜中PbI2的含量,也影响钙钛矿的晶粒尺寸、取向及光学吸收等性质,从而导致器件性能的改变,当钙钛矿薄膜表面分布约45%的PbI2时器件性能更佳。此外,PbI2的形貌、结晶性和孔隙度受退火方式的影响显著,与溶剂退火相比,通过短暂的1 min热退火制备的PbI2薄膜更有利于减少钙钛矿表界面缺陷,提升器件的开路电压,最终使器件的基础光电转换效率(PCE)可以提升至20.89%。上述研究结果有助于进一步优化钙钛矿太阳电池制备工艺,提升器件性能。  相似文献   

2.
钙钛矿薄膜的晶粒尺寸对器件性能影响很大。采用湿润性不同的空穴传输层以及不同浓度的CH3NH3I(MAI)溶液,使用热退火和溶剂气氛退火的方法制备出CH3NH3PbI3薄膜及相应电池。测量了不同制备条件的钙钛矿薄膜的X射线衍射、扫描电子显微镜、光致发光谱,以及器件的电流密度-电压曲线。结果表明,溶剂气氛退火可以有效地增大薄膜的晶粒尺寸,提高器件的电流密度;较高浓度的MAI能将PbI2完全转化为CH3NH3PbI3,增大晶粒尺寸;不湿润的功函数更高的空穴传输层有利于电池效率的提高。制备了最高效率为13.3%的CH3NH3PbI3钙钛矿电池,为制备更大晶粒的钙钛矿薄膜与更高效率的钙钛矿太阳电池奠定了基础。  相似文献   

3.
硫化锡薄膜是一种重点研究的染料敏化太阳能电池对电极材料。采用低温沉积技术制备硫化锡薄膜。采用SEM、TEM、XPS表征硫化锡薄膜的形貌结构以及元素和价态。结果分析表明,在FTO上可直接获得硫化锡薄膜,且呈现出片状结构。通过调控二水合氯化亚锡和硫代乙酰胺的摩尔比,有效调控其表面形貌。电化学测试表明,当二水合氯化亚锡和硫代乙酰胺的摩尔比为1∶1时,硫化锡薄膜展现出较好的电催化性能。以硫化锡薄膜为对电极,组装染料敏化太阳能电池,并测试其电流密度-电压曲线。结果表明,电池器件光电转换效率达到3.14%。可见,采用低温沉积技术制备的硫化锡薄膜可作为非铂对电极材料,具有广阔的应用前景。  相似文献   

4.
在一步溶液法制备钙钛矿薄膜的工艺中,溶剂环境是决定薄膜质量的关键因素。本文以全空气环境中,甲苯、氯苯、乙醚、乙酸乙酯这四种常见的反溶剂为研究对象,重点比较研究了不同反溶剂对钙钛矿多晶薄膜的结晶性、形貌、覆盖率以及器件光电转换效率的影响。研究表明:在相对湿度(RH)高达70%的环境下,相较于其他三种反溶剂,乙酸乙酯不仅能控制钙钛矿薄膜的结晶速率,还表现出优异的抗湿性,因此钙钛矿电池的效率达到17.8%,明显优于使用其他反溶剂。  相似文献   

5.
以醇溶性钛螯合物为阴极修饰层的高效聚合物太阳能电池   总被引:1,自引:1,他引:0  
以醇溶性的钛螯合物乙酰丙酮氧钛(TOPD)为电子收集层,聚3-己基噻吩(P3HT)为电子给体,富勒烯衍生物(PC60BM或PC70BM)为电子受体,制备了高效本体异质结聚合物太阳电池。TOPD膜是通过旋涂TOPD异丙醇溶液,然后在空气中经60℃热退火15min得到。通过优化TOPD层厚度及器件制备工艺,显著提高了聚合物太阳能电池的短路电流。通过引入TOPD电子收集层,使基于P3HT:PC60BM活性层的太阳能电池在AM1.5G、100mW·cm-2的光照条件下光-电转换效率(PCE)由2.72%提高到3.65%。用PC70BM代替PC60BM,可以使电池的PCE进一步提高到3.96%。PCE的提升主要归结于TOPD的层的引入可以提高电子传输速率并且可以降低电池的串联电阻。除此之外,TOPD替代常用的低功率金属Ca作为阴极修饰材料,可以有效提高聚合物质太阳能电池器件的工作稳定性。  相似文献   

6.
通过化学溶液沉积法制备的BiFeO3-BaTiO3薄膜在室温下能够同时显现铁电性和铁磁性。在600℃至700℃的条件下,以Pt/TiOx/SiO2/Si为载体,能够成功得到钙钛矿单相0.7BiFeO3-0.3BaTiO3薄膜。随着结晶温度上升,晶粒持续增长,最终在700℃时到达更高的结晶度。由于0.7BiFeO3-0.3BaTiO3薄膜的绝缘电阻较低,它所显现的极化(P)-电场(E)磁滞回线较弱。尽管如此,在0.7BiFeO3-0.3BaTiO3薄膜铁的位置上添加锰,高作用场的漏电流有效地减少,最终铁电性质得到了提高。在室温下,添加了摩尔分数5%的锰的0.7BiFeO3-0.3BaTiO3薄膜同时显现铁电极化和铁磁磁化磁滞回线。  相似文献   

7.
钙钛矿太阳电池(PSC)具有高光电转换效率(PCE)、低成本、易采用溶液法制备等特点,在发展轻薄、便携的柔性太阳电池方面有独特优势,可用于可穿戴设备、光伏建筑等领域。由于在柔性衬底上沉积均匀和高质量的钙钛矿薄膜颇具挑战性,目前,单结柔性钙钛矿太阳电池的PCE虽已经达到24.08%,但仍落后于刚性钙钛矿太阳电池(认证PCE为26.1%);此外,柔性钙钛矿薄膜在制备和弯曲循环过程中会不可避免地产生晶界裂纹,这也为柔性钙钛矿太阳电池的稳定性和可靠性带来巨大挑战。系统地评述了提升柔性钙钛矿太阳电池PCE和稳定性的研究进展,从柔性衬底、晶粒调控、晶界增强、界面钝化及结构优化等不同角度进行了归纳总结,并对柔性钙钛矿太阳电池未来发展存在的问题和挑战进行了展望。  相似文献   

8.
利用静电纺丝技术制备SnO2∶聚乙烯吡咯烷酮(PVP)复合纳米线(NW)和纳米带(NB),然后将其应用到钙钛矿太阳能电池(PSC)来提高器件性能。首先利用静电纺丝和高温氧化制备出表面光滑、分布均匀、覆盖率可控的SnO2∶PVP NW,随后通过溶剂处理展宽得到SnO2∶PVP NB。分别将其作为电子传输层应用于钙钛矿太阳能电池,器件结构为氧化铟锡(ITO)/SnO2/SnO2∶PVP NW (NB)/FAx MA1-x PbI yC l3-y/Spiro-OMe TAD/Ag。研究发现,在纺丝接收时间70 s内,覆盖率随接收时间线性增加。与参考器件相比,覆盖率31%的SnO2∶PVP NW加入钙钛矿太阳能电池的光电转换效率(PCE)基本没有变化。将溶剂处理后得到的SnO2∶PVP NB加入钙钛矿太阳能电池,其器件的PCE从18.52%提高到20.96%。同时,由于PVP对钙钛矿具有良好的钝化作用,器件的稳定性也得到较大的改善,12天后归...  相似文献   

9.
蒋宇宏  高博文  陈云龙  郑加金 《半导体光电》2014,35(6):1004-1007,1012
选用聚[9-(1-辛基壬基)-9H-咔唑-2,7-二基]-2,5-噻吩二基-2,1,3-苯并噻二唑-4,7-二基-2,5-噻吩二基](PCDTBT)作为电子给体,[6,6]-苯基-碳71-丁酸甲酯(PC71BM)作为电子受体,分别以邻二氯苯(ODCB)、氯仿(CF)以及邻二氯苯/氯仿(ODCB/CF)不同比例混合溶剂作为活性层溶剂制备有机薄膜太阳电池,研究了不同溶剂对光伏电池光电性能的影响。结果表明:合适比例的ODCB/CF(1/1)作为溶剂对制备的光伏器件紫外吸收光谱和外量子效率曲线都起到了积极的作用,此时器件能量转换效率最高,为2.28%,较单一溶剂ODCB下制备的器件效率提高了42%。通过原子力显微镜表征发现此时器件光活化层有较好的相分离。  相似文献   

10.
锆酸铅薄膜的生长特性与表面化学态   总被引:1,自引:0,他引:1  
以醋酸铅和异丙醇锆为原料,乙二醇甲醚为溶剂。通过溶胶-凝胶法和快速退火工艺在Pt(111)/Ti/SiO2/Si(100)基片成功地制备出不开裂的钙钛矿PbZrO3薄膜。用XRD和原子力显微镜测量了薄膜随退火温度变化的结构和表面形貌特征,用XPS测试了650℃退火PbZrO3薄膜的表面化学态。  相似文献   

11.
薛松  韩彦军  罗毅 《半导体光电》2006,27(2):164-166
通过采用硫代乙酰胺(CH3CSNH2)溶液浸泡和沉积SiNx薄膜对干法刻蚀后的GaN基LED进行了处理.处理后,LED器件在-5V直流电压偏置下的漏电流下降到约1/6.X射线光电子能谱(XPS)分析结果表明,CH3CSNH2溶液处理能阻止GaN表面吸附O杂质,起到钝化的作用.沉积SiNx介质薄膜能有效隔绝LED器件和周围的环境.因此,这种两步方法能钝化干法刻蚀后GaN的侧壁,有效地减小LED器件的漏电流.  相似文献   

12.
透明导电氧化物薄膜研究现状与产业化进展   总被引:22,自引:0,他引:22  
综述了 TCO(透明导电氧化物 )薄膜研究开发的历史与现状 ,展望了产业化前景。传统的 ITO薄膜性能优异 ,是重要的平面显示器件用材料。新型 Zn O薄膜成本低廉 ,极具发展潜力 ,有望在太阳能电池领域取代 ITO(掺锡氧化铟 )。多元复合氧化物薄膜是 TCO的发展方向之一 ;柔性衬底的应用扩大了 TCO薄膜的用途 ;溶胶 -凝胶制备工艺的开发促进了大面积 TCO薄膜的实用化  相似文献   

13.
将光电性能优异、可通过低温溶液法制备的卤化物钙钛矿制成阵列型光电探测器,必将推动其在成像、光通信等领域中的应用。然而,卤化物钙钛矿易被常规溶剂(包括显影液)溶解,导致其与光刻工艺不兼容。自组装单分子疏水层结合光刻工艺的亲水-疏水图形基底制备方法能解决制备过程中极性溶剂与钙钛矿材料不兼容的问题,通过简单的旋涂(极性钙钛矿前驱体溶液仅在亲水图形区域浸润)、低温退火,可以快速获得钙钛矿阵列。CH3NH3PbI3薄膜阵列光电探测器具有良好的光电性能, 530 nm光辐照下探测率为4.7×1011 Jones,响应度为0.055 A/W。这项工作为制备图案可控的钙钛矿薄膜阵列光电探测器提供了一种简单而有效的策略。  相似文献   

14.
采用氯苯/三氯甲烷混合溶剂配制聚甲基丙烯酸甲酯(PMMA):富勒烯(C60)溶液,运用旋涂法以氧化铟锡为基底制备薄膜,运用原子力显微镜对薄膜表面形貌进行表征。制备了ITO/PMMA:C60/Al结构的有机双稳态器件,采用伏安法对器件的电双稳态性能进行测试。最后,分析了有机层中的电荷陷阱对器件电双稳特性的影响。实验表明,当溶剂体积比为1:1时,薄膜粗糙度较低,以此薄膜为功能层制备的器件阈值电压为5.4 V,高/低电阻态的电阻比值达到32.1。器件的阈值电压随着薄膜表面粗糙的增加而加大。  相似文献   

15.
近年来研究表明,通过增大晶粒尺寸和减少晶界数量可以有效减小钙钛矿太阳能电池的漏电流和增大并联电阻,极大地增加其能量转化效率。溶剂热处理工艺是一种利用溶解再结晶的原理增大薄膜晶粒的实用工艺,可用于制备大晶粒高质量的多晶薄膜。本文制备了不同溶剂热处理时长的旋涂制备的钙钛矿CH3NH3PbI3薄膜,利用SEM和XRD分析了其形貌和晶体结构的变化,探索了薄膜晶粒形貌与电池性能的对应关系,应用优化后的溶剂热处理工艺成功制备出大晶粒、高性能的钙钛矿薄膜。实验表明,溶剂热处理法制备的钙钛矿CH3NH3PbI3薄膜平均晶粒尺寸接近3μm,较普通热处理方法制备的薄膜晶粒尺寸(约300 nm)有显著增大。  相似文献   

16.
在A(ZnSO4、SC(NH2)2、NH4OH)和含有联氨的B(ZnSO4、SC(NH2)2、NH4OH、(NH2)2)两种水溶液中采用化学水浴法沉积ZnS薄膜,研究了联氨对薄膜沉积过程和薄膜性质的影响.结果表明,加入少量联氨以后,薄膜沉积速度明显增加.两种溶液沉积的ZnS都为立方相结构,且含有联氨的B溶液沉积的ZnS薄膜表面附着颗粒较少.在含有联氨的B溶液中沉积的ZnS薄膜结晶度和短波区的透过率均高于A溶液沉积的ZnS薄膜.将两种溶液沉积的ZnS薄膜作为电池缓冲层制备铜铟镓硒(CIGS)薄膜太阳电池,加入联氨沉积的ZnS制备的CIGS电池转换效率达到7.77%,比不加联氨沉积的ZnS制备的CIGS电池转换效率提高了1.3%.  相似文献   

17.
目前CdS材料的制备方法有很多种,但是最常用的是化学水浴法。本文研究了浓度、反应溶液pH值、温度、沉积时间对CdS缓冲层薄膜的影响,对CIGS薄膜太阳能电池缓冲层CdS薄膜的制备方法进行了论述。  相似文献   

18.
有机/无机杂化钙钛矿太阳电池因具有高光吸收系数、高转换效率以及低制备成本等优点引起了科学界的广泛关注.综述了近年来有机/无机杂化钙钛矿吸收层几种制备工艺的研究进展,重点分析了目前应用较为广泛且制备工艺相对简单的一步溶液法和两步连续沉积法的工艺条件对钙钛矿薄膜质量及太阳电池光伏性能的影响,并详细介绍了几种制备工艺存在的主要问题及其调控的研究现状.此外,对后续工艺中的有机空穴传输材料及其溶剂、添加剂对钙钛矿太阳电池稳定性的影响及其调控的研究现状进行了简要阐述.为更好地提高钙钛矿太阳电池的效率和长期稳定性,制备工艺的优化和创新是未来钙钛矿太阳电池发展的趋势.  相似文献   

19.
对太阳能光伏电池的发展现状进行了综述,重点论述了气相沉积技术及其在非晶硅、CIGS等薄膜太阳电池薄膜制备中的应用,并对气相沉积技术及太阳能光伏电池的发展前景进行了展望。  相似文献   

20.
新型含硒杂环红光聚芴电解质的电致发光器件制备和研究   总被引:5,自引:5,他引:0  
罗潺  黄飞  杨伟  彭俊彪  曹镛 《液晶与显示》2006,21(2):134-138
利用新型的聚[9,9-二辛基芴-9,9-(双(3′-(N,N-二甲基)-N-乙基铵 溴-)丙基)芴-4,7-二噻吩-2-基-2,1,3-苯并硒二唑](PFNBr-DBSe)共扼聚电解质制备了聚合物发光二极管。这类共扼聚电解质可用乙醇等溶剂成膜,不仅可代替传统的甲苯等芳香性非极性溶剂,而且有利于制备溶液型的多层显示器件。文章研究了这类新型聚电解质的光致发光特性及发光二极管器件的电荧光特性。研究表明在紫外光照射或电激发下,窄带系的DBSe链段通过俘获激子能够实现有效的能量转移。聚电解质中DBSe的含量在5%以上,其器件具有电致发光峰值为700~740nm的饱和红光发射。所制聚电解质器件在用铝作电极时的电致发光效率比用钡作电极时要高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号