首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
武汉市水体中天然放射性水平调查   总被引:1,自引:0,他引:1  
本文介绍了武汉市江河、湖泊和饮用水中 U、Th、~(226)Ra、~(40)K 水平的调查结果,其范围值分别为:U,(7.01—10.08)×10~(-3)Bq/L;Th,(3.61—13.92)×10~(-4)Bq/L,~(226)Ra,(2.90—4.38)×10~(-3)Bq/L;~(40)K,(5.86—28.68)×10~(-2)Bq/L。枯水期江河水中天然放射性核素含量明显高于平水期,同一水期中放射性核素分布比较均匀,均在正常本底范围内。  相似文献   

2.
本文报道了1985年鄱阳湖湖底沉积物放射性水平的调查结果。沉积物中 U、Th、~(226)Ra、~(40)(?)和~(137)Cs 的比活度分别为64.8、67.9,58.9、676.1和3.5Bq/kg;用~(137)Cs 测龄方法作了沉积物泥芯垂直深度的年代定位,由此得知1985—1958年对应深度沉积物中 U、Th、~(226)Ra 和~(40)K 的比活度与1957—1930年对应深度沉积物比较无显著性差异;U、Th 和~(226)Ra 的浓集因予分别为5.2×10~413.9×10~4和4.8×10~4L/kg。  相似文献   

3.
通过对海河水系60个点位,720个样品的分析测定,给出了海河水系天然放射性核素浓度(Bq/L):~(238)U(21.8±1.29)×10~(-3)、~(232)Th(1.02±0.21)×10~(-3)、~(226)Ra(7.59±0.53)10~(-3) ~(49)K(87.4±18.5)×10~(-3)、总α放射性(4.50±0.50)×10~(-2),总β放射性(123.8±73.8)×10~(-2),属正常本底水平。本文还分析了海河水系天然放射性浓度分析情况及沿河系的变化规律。  相似文献   

4.
北京建筑材料中天然放射性核素含量及其所致居民剂量   总被引:1,自引:4,他引:1  
用φ75×75mmNaI(Tl)-塑料反符合γ谱仪分析了北京34种建材中的~(232)Th,~(226)Ra 和~(40)K 含量,平均值±标准差分别为(24±19)、(40±83)和(5.5±3.6)×10~2Bq/kg;由建材中~(226)Ra 含量算的北京室内~(222)Rn 浓度为29Bq/m~3;估算北京居民受天然辐射的年有效剂最当量为1.8mSv,其推中室内照射为1.5mSv。  相似文献   

5.
为调查北京地区外环境中来自地层的天然放射性核素的辐射剂量,在用现场辐射仪测量的同时,用φ75×75mm NaI(Tl)-塑料反符合低本底γ谱仪,分析了北京地区143个土壤样品。结果表明,北京地区表层土壤中~(232)Th、~(226)Ra 和~(40)K 浓度随地点、地形、成土母质类型有很大变化,其平均浓度分别为8.61×10~(-6)g/g、4.98×10~(-13)g/g 和2.31×10~(-6)g/g。由~(232)Th 及其子体、~(226)Ra 及其子体和~(40)K 平均浓度所致离地面1m 高处的空气吸收剂量率分别为2.31μrad/h、0.79μrad/h 和2.58μrad/h,总计为5.68μrad/h;~(232)Th 及其子体和~(40)K 的贡献约各占40%,~(226)Ra及其子体的贡献小于20%。按全市人口加权的空气总吸收剂量率为5.59μrad/h,由此所致的本市居民的年有效剂量当量为45.2mrem。  相似文献   

6.
本文对饮用水中放射性核素所造成的危险进行了评价。来自放射性核素的主要危险是自然产出的Ra、U和Rn。这些元素产出的平均水平为:~(226)Ra为1.11×10~(-2)—2.96×10~(-2)Bq/L,~(228)Ra为1.48×10~(-2)—3.7×10~(-2)Bq/L,天然铀为1.11×~(-2)—7.4×10~(-2)Bq/L,~(222)Rn为1.85—12.95Bq/L,~(210)pb为<0.41×10~(-2)Bq/L,  相似文献   

7.
本文开发了一种新的高效液相色谱(HPLC)法,并应用于地质材料中U和Th含量的测定。首先用HF-HClO_4和HCl浸提液在螺旋盖Savillex烧杯中酸消解岩石样品,然后Th和U用定量的两步离子交换法从地质基体中分离出来,最后采用HPLC进行元素测定。Th和U在反相交换柱上用梯度淋洗,10min即互相分离,而且剩余基体元素以α-羟基异丁酸(HIBA)络合物形式与Th和U分离。在与偶氮胂Ⅲ在线后置柱反应之后,Th和U的测定是用可见分光光度测定法完成的。Th和U的检测限分别约为30×10~(-12)和100x10~(12)(或约0.75×10~(-9)和约2.5×10~(-9),用100mg岩石样品)。 HPLC技术已应用于评价分析特性的9种国际参考样品和3种性能良好的管理样品分析。分析样品中Th和U的浓度范围为<10×10~(-9)~>10×10~(-6),HPLC数据与火花源质谱、电感耦合等离子体(ICP)和同位素稀释热电离质谱分折的数值完全吻合。对Th和U含量分别高于50×10~(-9)和5×10~(-9)的测量,方法精密度在1σ置信水平时分别好于±2%和±5%。  相似文献   

8.
本文介绍了用α谱仪同时测定人骨骼中~(228)Th、~(230)Th和~(232)Th含量的方法。样品用浓 HNO_3和 H_2O_3湿灰化,草酸钙共沉淀载带、CL-5208萃淋树脂和743阳离子交换树脂联合分离后,电沉积制源,在低温半导体α谱仪上测量。该方法对~(234)Th的全程回收率为95.0±1.7%,对铀和镭的去污系数分别为6.3×10~4和1.5×10~3,对~(228)Th、~(230)Th、~(232)Th 的探测下限分别为0.432、0.135和0.108Bq/kg(鲜重)。  相似文献   

9.
广西壮族自治区土壤中天然放射性核素含量调查研究   总被引:2,自引:0,他引:2  
杨名生 《辐射防护》1993,13(4):299-302
本文报道广西壮族自治区土壤中天然放射性核素含量调查的主要结果。基本与环境陆地γ辐射剂量率调查同位布点,全自治区共采集土壤样品383个,其中包括25 km×25 km 网格点样品360个,土壤类型加密点21个,特殊点2个。测量采用γ能谱法。调查结果表明,广西壮族自治区土壤(干样)中天然放射性核素~(238)U、~(226)Ra、~(232)Th、~(40)K 含量按面积加权平均值(±单次测量标准差)分别为:53.0(±32.7)、53.1(±35.2)、69.1(±34.6)和332.2(±234.4)Bq/kg。调查中发现“花山-姑婆山”一带土壤中天然放射性核素含量显著偏高,其土壤中~(238)U、~(226)Ra、~(232)Th、~(40)K 含量分别为170、184、211、766Bq/kg。  相似文献   

10.
对Yucca山附近的内华达州试验场J-13井地下水中~(238U和~(232)Th衰变链的元素活度进行了测定.采用~(222)Rn作为反冲通量的量度,测定了Ra和Pb的吸附(k_1)和解吸(k_2)比率常数,把(k_1/k_2)比值定义为无量纲分布系数K,Ra的x值为1.3×10~4,Pb为2.7×10~4,Th估计为10~4左右。  相似文献   

11.
The stopping powers of Be, Al, Ti, V, Fe, Co, Ni, Cu, Zn, Mo, Rh, Ag, Sn, Ta, Pt and Au for 6.5 MeV have been measured using a surface barrier silicon detector. The accuracy of the results is ± 0.3%. The detail of the experimental procedures is described. The results have been compared with the Risø data and the Aarhus data of Andersen et al. The present results for Al, Cu and Ag agree very well with the Aarhus results at 6.5 MeV. The mean excitation energy has been extracted from the present results using the Bonderup shell correction, the Barkas correction and the Bloch correction. The parameters x and b which appear in the Bonderup shell correction and the Barkas correction have been newly determined as x = 1.358 and b = 1.3. The present mean excitation energy agrees very well with the I values obtained by other authors. It has been confirmed that the Bonderup shell correction is quantitatively correct for 6.5 MeV protons.  相似文献   

12.
13.
Wavelengths, transition probabilities, and oscillator strengths have been calculated for M-shell electric dipole transitions in Co-, Ni-, Cu-, Zn-, Ga-, Ge-, and Se-like Au ions. The fully relativistic multiconfiguration Dirac–Fock method, taking quantum electrodynamical effects and the Breit correction into account, was used in the calculations. Calculated energy levels of M-shell excited states for Cu-, Zn-, Ga-, Ge-, and Se-like Au ions from the method were compared with available theoretical and experimental results, and good agreement with them was achieved.  相似文献   

14.
15.
16.
17.
18.
Production cross sections for 85 discrete γ-rays at 125° were measured with a Ge(Li) detector for interactions of 14.8 MeV neutrons with natural samples of O, Na, Al, Cl, Cr, Fe, Ni, Cu and Pb. The obtained cross sections were compared with the results of previous works. For O, Na, Al, Cr and Ni, the present results agree with the previous data measured with monoenergetic neutron sources; for Cl, Fe, Cu and Pb, the present results are larger than the previous data. In comparison between the present results shown by histograms of γ-ray energy and unfolded data, a considerable discrepancy is found from some of the previous data for Fe.  相似文献   

19.
20.
The results of calculations of the level constants in the elements Pd, Os, Ir, Mo, I, In, Ta, Th, U238 are presented; the cross sections for these elements have been published earlier. New measurements for the cross sections in Ir, Th, U238 are cited. The measurements were made with a mechanical-chopper spectrometer with a resolution of 0.08 sec/m in the energy region from 4.5 to 10,000 ev. The integrated and differential curves for the distribution of neutron widths in these elements are plotted.Presented at the International Conference on Nuclear Reactions in Amsterdam (June 1956).The authors take this opportunity to express their gratitude to U. Chi-Kwa and Suan Chi-Ling for their assistance in the mathematical analysis of the experimental results, G. M. Kukavadze for the mass-spectro-graphic analyses of the samples, V. N. Bovinoi and M. P. Anikinoi for providing the chemical analyses and A. I. Ermakov, N. S. Rezvyakov, G. V. Rukolaine and K. A. Trostinoi for help in building the analyzer and in carrying out the measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号