首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of sourdough as a leavening agent in bread making is a very old method that can be traced back to ancient times. Sourdoughs harbor a complex microbiota that is affected by multiple factors including factors related to cereal plants, grains, and sourdough processing techniques. Lactobacillus sanfranciscensis is the key autochthonous bacterium of the traditional sourdough microbiota and it is said to be “sourdough adapted” species. Despite the great dominance of this bacterium in sourdoughs, the origin of this species still remains unclear. Lactobacillus sanfranciscensis positively influences all aspects of sourdough and fermented foods. However, the positive influence of this species on sourdough is a strain‐dependent characteristic. The first purpose of this review was to discuss factors affecting the microbiota of sourdoughs with particular emphasis on reasons behind the remarkable prevalence of L. sanfranciscensis in this ecological niche. The second objective was to discuss the genotypic and phenotypic classification of L. sanfranciscensis strains and the influence of this species on technological and functional characteristics of sourdough including its influence on rheological properties of dough and bread characteristics, texture, aroma, and shelf‐life through the inhibition of fungal growth.  相似文献   

2.
The adaptability of lactic acid bacteria (LAB) and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava was investigated using PCR-DGGE and bacteriological culture combined with rRNA gene sequence analysis. Sourdoughs were prepared either from flours of the cereals wheat, rye, oat, barley, rice, maize, and millet, or from the pseudocereals amaranth, quinoa, and buckwheat, or from cassava, using a starter consisting of various species of LAB and yeasts. Doughs were propagated until a stable microbiota was established. The dominant LAB and yeast species were Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus paralimentarius, Lactobacillus plantarum, Lactobacillus pontis, Lactobacillus spicheri, Issatchenkia orientalis and Saccharomyces cerevisiae. The proportion of the species within the microbiota varied. L. paralimentarius dominated in the pseudocereal sourdoughs, L. fermentum, L. plantarum and L. spicheri in the cassava sourdough, and L. fermentum, L. helveticus and L. pontis in the cereal sourdoughs. S. cerevisiae constituted the dominating yeast, except for quinoa sourdough, where I. orientalis also reached similar counts, and buckwheat and oat sourdoughs, where no yeasts could be detected. To assess the usefulness of competitive LAB and yeasts as starters, the fermentations were repeated using flours from rice, maize, millet and the pseudocereals, and by starting the dough fermentation with selected dominant strains. At the end of fermentation, most of starter strains belonged to the dominating microbiota. For the rice, millet and quinoa sourdoughs the species composition was similar to that of the prior fermentation, whereas in the other sourdoughs, the composition differed.  相似文献   

3.
In this study, four different laboratory scale gluten-free (GF) sourdoughs were developed from buckwheat or teff flours. The fermentations were initiated by the spontaneous biota of the flours and developed under two technological conditions (A and B). Sourdoughs were propagated by continuous back-slopping until the stability was reached. The composition of the stable biota occurring in each sourdough was assessed using both culture-dependent and -independent techniques. Overall, a broad spectrum of lactic acid bacteria (LAB) and yeasts species, belonging mainly to the genera Lactobacillus, Pediococcus, Leuconostoc, Kazachstania and Candida, were identified in the stable sourdoughs. Buckwheat and teff sourdoughs were dominated mainly by obligate or facultative heterofermentative LAB, which are commonly associated with traditional wheat or rye sourdoughs. However, the spontaneous fermentation of the GF flours resulted also in the selection of species which are not consider endemic to traditional sourdoughs, i.e. Pediococcus pentosaceus, Leuconostoc holzapfelii, Lactobacillus gallinarum, Lactobacillus vaginalis, Lactobacillus sakei, Lactobacillus graminis and Weissella cibaria. In general, the composition of the stable biota was strongly affected by the fermentation conditions, whilst Lactobacillus plantarum dominated in all buckwheat sourdoughs. Lactobacillus pontis is described for the first time as dominant species in teff sourdough. Among yeasts, Saccharomyces cerevisiae and Candida glabrata dominated teff sourdoughs, whereas the solely Kazachstania barnetti was isolated in buckwheat sourdough developed under condition A. This study allowed the identification and isolation of LAB and yeasts species which are highly competitive during fermentation of buckwheat or teff flours. Representatives of these species can be selected as starters for the production of sourdough destined to GF bread production.  相似文献   

4.
Flavour of type II sourdoughs is influenced by the ingredients, processing conditions, and starter culture composition. It is, however, not fully clear to what extent different sourdough lactic acid bacteria (LAB) contribute to flavour. Therefore, two types of flour (rye and wheat) and different LAB starter culture strains were used to prepare sourdoughs, thereby leaving the yeast microbiota uncontrolled. All LAB starter culture strains tested were shown to be prevalent and to acidify the flour/water mixture to pH values between 3.1 and 3.9 after 24 h of fermentation. Multiple aldehydes, alcohols, ketones, and carboxylic acids were produced by the sourdough-associated microbiota throughout the fermentation period. Based on the organoleptic evaluation of breads produced with these sourdoughs, five LAB strains were selected to perform prolonged wheat and rye fermentations as to their capacity to result in an acidic (Lactobacillus fermentum IMDO 130101, Lactobacillus plantarum IMDO 130201, and Lactobacillus crustorum LMG 23699), buttermilk-like (Lactobacillus amylovorus DCE 471), or fruity flavour (Lactobacillus sakei CG1). Upon prolonged fermentation, higher metabolite concentrations were produced. For instance, L. sakei CG1 produced the highest amounts of 3-methyl-1-butanol, which was further converted into 3-methylbutyl acetate. The latter compound resulted in a fruity banana flavour after 48 h of fermentation, probably due to yeast interference. Rye fermentations resulted in sourdoughs richer in volatiles than wheat, including 3-methyl-1-butanol, 2-phenylethanol, and ethyl acetate.  相似文献   

5.
The use of sourdough in wheat and rye breads has been extensively studied; however, little is known about its potential effect when baking oat bread. Consequently, the impact of sourdough on oat bread quality was investigated. Two different sourdoughs were prepared from wholegrain oat flour without the addition of starter cultures, by continuous propagation at 28 (SD 28) or 37 °C (SD 37) until the composition of the lactic acid bacteria remained stable. The dominant LAB were identified by sequence analysis of the 16S rDNA isolated from pure cultures. LAB from SD 28 belonged to the species Leuconostoc argentinum, Pedicoccus pentosaceus and Weissella cibaria, while Lactobacillus coryniformis dominated SD 37. The isolated LAB were further used as starter cultures for the production of oat sourdoughs. Fundamental rheology revealed softening of the sourdoughs compared to non-acidified and chemically acidified controls, which could not be attributed to proteolytic activity. Incorporation of oat sourdough into an oat bread recipe resulted in significantly increased loaf-specific volume as well as improved texture, independent of addition level or sourdough type. Overall, the results of this study show that sourdoughs containing lactic acid bacteria isolated from oats have the potential to enhance oat bread quality.  相似文献   

6.
This study aimed at investigating the robustness of selected sourdough strains of Lactobacillus plantarum. Seven strains were singly used as sourdough type I starters under daily back-slopping propagation (ten days) using wheat flour. Cell numbers of presumptive lactic acid bacteria varied slightly (median values of 9.13–9.46 log cfu g−1) between and within started sourdoughs, as well as the acidifying activity (median values of 1.24–1.33). After three days also the control sourdough (unstarted) had the same values. As shown by RAPD-PCR analysis, five (DB200, 3DM, G10C3, 12H1 and LP20) out of seven strains maintained elevated cell numbers (ca. 9 log cfu g−1) throughout ten days. The other two strains progressively decreased to less than 5 log cfu g−1. As identified by partial sequencing of 16S rRNA and recA genes, L. plantarum (11 isolates), pediococci (7), Lactobacillus casei (3) and Lactobacillus rossiae (2) dominated the flour microbiota. Monitoring of lactic acid bacteria during sourdough propagation was carried out by culture dependent approach and using PCR-DGGE (Denaturing Gradient Gel Electrophoresis). Except for the sourdough started with L. plantarum LP20, in all other sourdoughs at least one autochthonous strain of L. plantarum emerged. All emerging strains of L. plantarum showed different RAPD-PCR profiles. L. rossiae and Pediococcus pentosaceus were only found in the control and sourdough started with strain 12H1. The characterization of the catabolic profiles of sourdoughs (Biolog System) showed that sourdoughs containing persistent starters behaved similarly and their profiles were clearly differentiated from the others. One persistent strain (DB200) of L. plantarum and Lactobacillus sanfranciscensis LS44, previously shown to be persistent ( Siragusa et al., 2009), were used as the mixed starter to produce a wheat flour sourdough. Both strains cohabited and dominated during ten days of propagation.  相似文献   

7.
Hydrocolloids improve the volume, texture, and shelf life of bread. Exopolysaccharides (EPS) produced by lactic acid bacteria (LAB) during sourdough fermentation can replace hydrocolloids. It was the aim of this study to determine whether heteropolysaccharides (HePS) synthesized intracellularly from sugar nucleotides by glycosyltransferases are produced in wheat and gluten-free sorghum sourdough at effective levels. The HePS-producing strains Lactobacillus casei FUA3185, L. casei FUA3186, and Lactobacillus buchneri FUA3154 were used; Weissella cibaria 10M producing no EPS in the absence of sucrose served as control strain. Cell suspensions of L. buchneri in MRS showed the highest viscosity at low shear rate. Glycosyltransferase genes responsible of HePS formation in LAB were expressed in sorghum and wheat sourdough. However, only HePS produced by L. buchneri influenced the rheological properties of sorghum sourdoughs but not of wheat sourdoughs. Sorghum sourdough fermented with L. buchneri exhibited a low |G| compared to the control, indicating a decrease in resistance to deformation. An increase in tan δ indicated decreased elasticity.The use of LAB producing HePS expands the diversity of EPS and increases the variety of cultures for use in baking.  相似文献   

8.
The lactic acid microflora of nine traditional wheat sourdoughs from the Midi-Pyrénées area (South western France) was previously isolated and preliminary characterized using conventional morphological and biochemical analysis. However, such phenotypic methods alone are not always reliable and have a low taxonomic resolution for identification of lactic acid bacteria species. In the present study, a total of 290 LAB isolates were identified by PCR amplification using different sets of specific primers in order to provide a thorough characterization of the lactic flora from these traditional French sourdoughs. Overall, the LAB isolates belonged to 6 genera: Lactobacillus (39%, 8 species), Pediococcus (38%, 1 species), Leuconostoc (17%, 2 species), Weissella (4%, 2 species), Lactococcus (1%, 1 species) and Enterococcus (< 1%, 1 species) and 15 different species were detected: L. plantarum, L. curvatus, L. paracasei, L. sanfranciscensis, L. pentosus, L. paraplantarum, L. sakei, L. brevis, P. pentosaceus, L. mesenteroides, L. citreum, W. cibaria, W. confusa, L. lactis and E. hirae. Facultative heterofermentative LAB represent more than 76% of the total isolates, the main species isolated herein correspond to L. plantarum and P. pentosaceus. Obligate heterofermentative lactobacilli (L. sanfranciscencis, L. brevis) represent less than 3% of the total isolates whereas Leuconostoc and Weissella species represent 21% of the total isolates and have been detected in eight of the nine samples. Detection of some LAB species was preferentially observed depending on the isolation culture medium. The number of different species within a sourdough varies from 3 to 7 and original associations of hetero- and homofermentative LAB species have been revealed. Results from this study clearly confirm the diversity encountered in the microbial community of traditional sourdough and highlight the importance of LAB cocci in the sourdough ecosystem, along with lactobacilli.  相似文献   

9.
The use of sourdough in wheat and rye breads has been extensively studied; however, little is known about its potential effect when baking oat bread. Consequently, the impact of sourdough on oat bread quality was investigated. Two different sourdoughs were prepared from wholegrain oat flour without the addition of starter cultures, by continuous propagation at 28 (SD 28) or 37 °C (SD 37) until the composition of the lactic acid bacteria remained stable. The dominant LAB were identified by sequence analysis of the 16S rDNA isolated from pure cultures. LAB from SD 28 belonged to the species Leuconostoc argentinum, Pedicoccus pentosaceus and Weissella cibaria, while Lactobacillus coryniformis dominated SD 37. The isolated LAB were further used as starter cultures for the production of oat sourdoughs. Fundamental rheology revealed softening of the sourdoughs compared to non-acidified and chemically acidified controls, which could not be attributed to proteolytic activity. Incorporation of oat sourdough into an oat bread recipe resulted in significantly increased loaf-specific volume as well as improved texture, independent of addition level or sourdough type. Overall, the results of this study show that sourdoughs containing lactic acid bacteria isolated from oats have the potential to enhance oat bread quality.  相似文献   

10.
A method based on microbial re-inoculation, or the so-called backslopping and subsequent proofing of rye bread dough simulating commercial one-stage sourdough process, was used for the screening of the leavening capacity of sourdough yeast strains. Two yeast strains were initially tested with seven Lactobacillus strains. Thereafter, 17 yeast strains, mostly of sourdough origin, were tested with a backslopping procedure with heterofermentative Lactobacillus brevis as an acidifying lactic acid bacteria (LAB). The highest leavening capacity was found in sourdoughs containing Candida milleri, in particular when it was accompanied by obligately homofermentative Lactobacillus acidophilus or facultatively heterofermentative Lactobacillus plantarum when it acted homofermentatively. The leavening capacity of the reference strain Saccharomyces cerevisiae was about half that of C. milleri in all sourdoughs tested. The re-inoculation procedure increased the differences found in the leavening capacity of the tested yeast strains during final proofing of rye bread dough. The backslopped sourdoughs containing a heterofermentative Lactobacillus strain were more suppressive than those containing a homofermentative strain. The highest leavening capacity was found in C. milleri strains. The use of one backslopping cycle before assaying the leavening capacity of a laboratory sourdough is recommended since it helps to differentiate between yeast strains to be tested for their leavening power in the final bread dough.  相似文献   

11.
Sourdough is typically characterized by the complex microbial communities mainly comprising of yeasts and lactic acid bacteria (LAB). The objective of this study was to explore the microbiota of Chinese traditional sourdoughs collected from different areas of China using culture‐dependent and denaturing gradient gel electrophoresis (DGGE) methods. A total of 131 yeasts, 2 molds, and 106 LAB strains were isolated and identified. Based on the culture‐dependent analysis, the populations of yeasts and LAB were at the level of 105 to 107 and 106 to 107 cfu/g, respectively. Similarly, the results of RT‐qPCR showed that the values of total yeasts and LAB populations were in the range of 106 to 107 and 107 to 108 copies/g, respectively. Using culture‐dependent method, a total of 7 yeasts, 2 molds and 7 LAB species were identified. Results showed that Saccharomyces cerevisiae and Lactobacillus plantarum were the predominant species among the yeasts and LAB microflora. Similarly, using PCR‐DGGE approach, 7 yeasts, 1 mold and 9 LAB species were detected. The yeast, S. cerevisiae, represented the predominant, while the yeast Candida tropicalis represented the subdominant species of the yeast community. Among the LAB community, Lactobacillus sanfranciscensis was the predominant species, while Lactococcus qarvieae, Enterococcus faecium, Lactobacillus delbrueckii and Enterococcus cecorum were among the less dominant species.  相似文献   

12.
Four spontaneous rye sourdough fermentations were performed over a period of ten days with daily back-slopping. Samples taken at all refreshment steps were used for culture-dependent and culture-independent characterization of the microbiota present. Furthermore, an extensive metabolite target analysis was performed through a combination of various chromatographic methods, including liquid chromatography coupled to mass spectrometry (LC/MS) and gas chromatography coupled to mass spectrometry (GC/MS). Spearman’s rank correlation coefficients were calculated and a principal component analysis (PCA) was performed on the data obtained in this study combined with data obtained previously for wheat and spelt sourdoughs. In general, the establishment of a stable microbial ecosystem occurred through a three-phase evolution, with mainly Lactobacillus plantarum and Lactobacillus fermentum dominating the rye sourdough ecosystems. PCA revealed that ornithine and mannitol were positively correlated with rye sourdoughs, contributing to bacterial competitiveness at the onset of sourdough production. Wheat and spelt sourdoughs showed a high degree of similarity, although certain compounds (e.g. indolelactic acid) appeared to be specific for spelt sourdoughs. The production of amino acid metabolites, mainly hydroxy acids (e.g. phenyllactic acid) and alcohols (e.g. 3-methyl-1-butanol), contributed to the equilibration of the redox balance and further enhanced the competitiveness of dominant species in stable sourdoughs.  相似文献   

13.
The influence of lactic acid bacteria (LAB) growth on oxidation–reduction potential (ORP) of buckwheat sourdoughs was investigated. Sourdough fermentations are widely used for the production of bread and other bakery products. Until now the pH value is the most used control parameter taken into account during sourdough technology and no information is available about the influence of sourdough microbiota on the ORP or the use of redox potential (E h7) measurements as a fermentation control parameter. The influence of growth and metabolism of lactobacilli on the oxidation–reduction potential of buckwheat (Fagopyrum esculentum Moench) sourdoughs was investigated. Upon inoculation with LAB, ORP changes were observed. Each strain exhibits a different ORP time course curve. The E h7 after 8?h using Lactobacillus plantarum, Lactobacillus sakei, Weissella cibaria and Pediococcus pentosaceus reached 89.2?±?4, 104.5?±?15.3, 30.2?±?4 and 181.5?±?2.6?mV, respectively. W. cibaria showed the highest reducing activity and P. pentosaceus the lowest one. The maximal reduction rate was neither correlated with the highest acidification rate nor with the maximal growth rate. Nevertheless, the reduction rate shows a similar trend like the acidification rate during the time course of fermentation. The ORP changes occurred concomitantly with the acidification, and the acid production decreased after 2?h from the reducing step. These results showed the possibility to carry out ORP measurements in dough system. As strains exhibit very characteristic ORP curves, this parameter can be used as real-time control tool to monitor the time course of fermentation and metabolic activity. This enables an evidence-based determination of fermentation end and/or (intermediate) harvesting point, which is especially helpful in the development of new cereal fermentation types as in gluten-free sourdoughs.  相似文献   

14.
The effects of temperature, pH, inoculum level, and NaCl on the growth and metabolism of Lactobacillus sanfranciscensis and Candida humilis in rye sourdough were determined. The temperature optima for growth of C. humilis and L. sanfranciscensis were 28 and 32 °C, respectively. Yeast growth was inhibited at 35 °C. The pH did not affect yeast growth in the range 3.5–5.5, whereas growth of L. sanfranciscensis was inhibited at pH 4.0. A NaCl concentration of 4% (flour base) inhibited growth of L. sanfranciscensis but not C. humilis. The effects of the process parameters on the formation of lactate, acetate, ethanol, and CO2 by the organisms were generally in agreement with their effects on growth. However, decreased formation of acetate by L. sanfranciscensis was observed at 35 °C although lactate and ethanol formation were not affected. In conclusion, the study provides a rationale for the stable persistence of L. sanfranciscensis and C. humilis in traditional sourdoughs and will facilitate the optimisation of sourdough fermentations in traditional and new applications.  相似文献   

15.
Cooperative metabolism of lactobacilli in silage fermentation converts lactate to propionate. This study aimed to determine whether propionate production by Lactobacillus buchneri and Lactobacillus diolivorans can be applied for bread preservation. Propionate formation was observed in cofermentation with L. buchneri and L. diolivorans in modified MRS broth as well as sourdough with low, medium and high ash contents. 48 mM of propionate was formed in sourdough with medium ash content, but only 9 and 28 mM propionate were formed in sourdoughs prepared from white wheat flour or whole wheat flour, respectively. Acetate levels were comparable in all three sourdoughs and ranged from 160 to 175 mM. Sourdough fermented with L. buchneri and L. diolivorans was used in breadmaking and its effect on fungal spoilage was compared to traditional sourdough or propionate addition to straight doughs. Bread slices were inoculated with Aspergillus clavatus, Cladosporium spp., Mortierella spp. or Penicillium roquefortii. The use of 20% experimental sourdough inhibited growth of three of the four moulds for more than 12 days. The use of 10% experimental sourdough deferred growth of two moulds by one day. Bread from traditional sourdough with added acetate had less effect in inhibiting mould growth.  相似文献   

16.
Four types of sourdoughs (L, C, B, Q) from artisanal bakeries in Northern Italy were studied using culture-dependent and culture-independent methods. In all samples, the yeast numbers ranged from 160 to 107 cfu/g, and the numbers of lactic acid bacteria (LAB) ranged from 103 to 109 cfu/g. The isolated LAB were sequenced, and a similarity was noted between two samples (C, Q), both in terms of the species that were present and in terms of the percentage of isolates. In these two samples, Lactobacillus plantarum accounted for 73% and 89% of the bacteria, and Lactobacillus brevis represented 27% and 11%. In the third sample (B), however, the dominant LAB isolate was Lb. brevis (73%), while Lb. plantarum accounted for only 27%. The fourth sourdough (L) was completely different from the others. In this sample, the most prominent isolate was Weisella cibaria (56%), followed by Lb. plantarum (36%) and Pediococcus pentosaceus (8%). In three out of four samples (L, C and Q), all of the yeasts isolated were identified as Saccharomyces cerevisiae, yet only Candida humilis (90%) and Candida milleri (10%) were isolated in the fourth sample (B). The microbial ecology of the sourdoughs was also examined with direct methods. The results obtained by culture-independent methods and DGGE analysis underline a partial correspondence between the DNA and RNA analysis. These results demonstrate the importance of using a combined analytical approach to explore the microbial communities of sourdoughs.  相似文献   

17.
Biodiversity and identification of sourdough lactic acid bacteria   总被引:1,自引:0,他引:1  
  相似文献   

18.
The evolution of free D- and L-amino acids in sourdoughs started with various lactic acid bacteria (LAB) and yeasts was studied. Lactobacillus brevis subsp. lindneri CB1 and Lactobacillus plantrum DC400 had high proteolytic activity. During sourdough fermentation, Saccharomyces cerevisiae 141 and Saccharomyces exiguus M14 sequentially utilized free amino acids produced by bacterial activity. Due to increased cell yeast autolysis, more S. exiguus M14 inocula caused more free amino acids which were partially utilized by LAB without causing hydrolysis of wheat flour protein. D-alanine, D-glutamic acid and traces of other D-isomers were observed in sourdoughs fermented with L. brevis subsp. lindneri CB1 and S. cerevisiae 141. Free total D- and L-amino acid content decreased by more than 44% after baking the sourdoughs. No abiotic generation of new D-amino acid isomers was detected in the baked sourdoughs.  相似文献   

19.
Shalgam juice, hardaliye, boza, ayran (yoghurt drink) and kefir are the most known traditional Turkish fermented non-alcoholic beverages. The first three are obtained from vegetables, fruits and cereals, and the last two ones are made of milk. Shalgam juice, hardaliye and ayran are produced by lactic acid fermentation. Their microbiota is mainly composed of lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus brevis and Lactobacillus paracasei subsp. paracasei in shalgam fermentation and L. paracasei subsp. paracasei and Lactobacillus casei subsp. pseudoplantarum in hardaliye fermentation are predominant. Ayran is traditionally prepared by mixing yoghurt with water and salt. Yoghurt starter cultures are used in industrial ayran production. On the other hand, both alcohol and lactic acid fermentation occur in boza and kefir. Boza is prepared by using a mixture of maize, wheat and rice or their flours and water. Generally previously produced boza or sourdough/yoghurt are used as starter culture which is rich in Lactobacillus spp. and yeasts. Kefir is prepared by inoculation of raw milk with kefir grains which consists of different species of yeasts, LAB, acetic acid bacteria in a protein and polysaccharide matrix. The microbiota of boza and kefir is affected from raw materials, the origin and the production methods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号