首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, biocompatible hydrogel matrices for wound‐dressing materials and controlled drug‐release systems were prepared from poly[hydroxyethyl methacrylate‐co‐poly(ethylene glycol)–methacrylate] [p(HEMA‐co‐PEG–MA] films via UV‐initiated photopolymerization. The characterization of the hydrogels was conducted with swelling experiments, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis (differential scanning calorimetry), and contact‐angle studies. The water absorbency of the hydrogel films significantly changed with the change of the medium pH from 4.0 to 7.4. The thermal stability of the copolymer was lowered by an increase in the ratio of poly(ethylene glycol) (PEG) to methacrylate (MA) in the film structure. Contact‐angle measurements on the surface of the p(HEMA‐co‐PEG–MA) films demonstrated that the copolymer gave rise to a significant hydrophilic surface in comparison with the homopolymer of 2‐hydroxyethyl methacrylate (HEMA). The blood protein adsorption was significantly reduced on the surface of the copolymer hydrogels in comparison with the control homopolymer of HEMA. Model antibiotic (i.e., minocycline) release experiments were performed in physiological buffer saline solutions with a continuous flow release system. The amount of minocycline release was shown to be dependent on the HEMA/PEG–MA ratio. The hydrogels have good antifouling properties and therefore are suitable candidates for wound dressing and other tissue engineering applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
In this work we report the photopolymerization of poly(2‐hydroxyethyl methacrylate) (PHEMA) together with a hydrophilic chitosan derivate (carboxymethyl‐chitosan) to yield a semi‐interpenetrating polymer network (semi‐IPN) that was filled with poly(N‐vinylcaprolactam)/poly(ethylene glycol methacrylate) core–shell nanogels in order to enhance the mechanical properties of the resulting hydrogels. The mechanical properties of the nanofilled semi‐IPNs were found to be more suitable for wound dressing applications than the PHEMA hydrogel as described by dynamic mechanical analysis in dry form and submerged in water. This was evidenced by a higher Young's modulus and higher elongation at break in the semi‐IPNs compared to blank PHEMA hydrogels. Furthermore, when the hydrogels were filled with nanogels, there was an elongation at break similar to that of skin with only a slightly lower Young's modulus. © 2019 Society of Chemical Industry  相似文献   

3.
Two latices—the poly(dimethylsiloxane) (PDMS)/poly(methyl methacrylate‐co‐butyl acrylate‐co‐methacrylic acid) system (PA latex) and the PDMS/poly(vinyl acetate‐co‐butyl acrylate) system (PB latex)—were prepared by seeded emulsion polymerization, and PA/PB complex latices were obtained through the interparticle complexation of the PA latex with the PB latex. In addition, for the further study of the interparticle complexation of the PA latex with the PB latex, copolymer latices [PDMS/methyl methacrylate‐co‐butyl acrylate‐co‐vinyl acetate‐co‐methacrylic acid) (PC)] were prepared according to the monomer recipe of the complex latices and the polymerization process of the component latices. The properties of the obtained polymer latices and complex latices were investigated with surface‐tension, contact‐angle, and viscosity measurements. The mechanical properties of the coatings obtained from the latices were investigated with tensile‐strength measurements. The results showed that, in comparison with the two component latices (PA latex and PB latex) and the corresponding copolymer latices (PC latices), the PA/PB complex latices had lower surface tension, lower viscosities, and better wettability to different substrates. The tensile strengths of the coatings obtained from the complex latices were higher than the tensile strengths of the coatings from the two component latices and copolymer latices. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2522–2527, 2004  相似文献   

4.
The preparation of poly(hexylacrylate)core‐poly(ethyleneglycol methacrylate)shell (PHA‐co‐PEGMA) nanogels, to be used as fillers in nanocomposite hydrogels, is reported. Stable nanogels with particle sizes between 90–300 nm were obtained varying the conditions of synthesis. The synthesis recipe of the nanogels could be easily scaled up. Purified and dispersed nanogels in aqueous solution were used as soft fillers for poly(2‐hydroxyethyl methacrylate) (PHEMA) hydrogels, crosslinked with ethylene glycol dimethacrylate (EGDMA). The obtained nanocomposite hydrogels exhibit a larger swelling capacity and a higher thermal stability in comparison with the non‐filled PHEMA hydrogels. Young, storage, and lost moduli, increase largely, in the better case up to 72.5% in the swollen state; while in the dry state the storage modulus increase up to 4.7 fold with a very low load on nanogels (0.64 wt%); resulting in biomaterials with improved properties with potential applications in medical devices. POLYM. ENG. SCI., 59:170–181, 2019. © 2018 Society of Plastics Engineers  相似文献   

5.
In this study, slightly crosslinked poly(dimethylsiloxane)urethane‐co‐poly(methyl methacrylate) (PDMS urethane‐co‐PMMA) graft copolymers based on two diisocyanates, 2,4‐toluene diisocyanate (2,4‐TDI) and m‐xylene diisocyanate (m‐XDI), were successfully synthesized. Glass‐transition behaviors of the copolymers were investigated. Results confirm that PDMS–urethane and PMMA are miscible in the 2,4‐TDI system, but are only partially miscible in the m‐XDI system. The methylene groups adjoining the isocyanate in the m‐XDI system show increased phase‐separation behavior over the 2,4‐TDI system, in which the benzene ring adjoins the isocyanate. The functional group of PDMS–urethane improves the impact strength of the copolymers. The toughness depends on the compatibility of PDMS–urethane and PMMA segments in the copolymers. In the m‐XDI system, the impact strength of the copolymer containing 3.75 phr macromonomer achieves a maximum value (from 13.02 to 22.21 J/m). The fracture behavior and impact strength of the copolymers in the 2,4‐TDI system are similar to that of PMMA homopolymer, although they are independent of the macromonomer content in the copolymer. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1875–1885, 2002  相似文献   

6.
To investigate the effects of polymer chemistry and topology on physical properties and bacterial adhesion, various hydrogels composed of short hydrophilic [poly(ethylene oxide) (PEO)] and hydrophobic blocks were synthesized by polycondensation reactions. Differential scanning calorimetry and X‐ray diffraction analysis confirmed that all of the hydrogels were strongly phase‐separated due to incompatibility between PEO and hydrophobic blocks such as poly(tetramethylene oxide) (PTMO) and poly(dimethyl siloxane) (PDMS). The crystallization of PEO in the hydrogels was enhanced by the incorporation of longer PEO chains, the adoption of PDMS as a hydrophobic block, and the grafting of monomethoxy poly(ethylene oxide) (MPEO). Compared to Pellethane, the control polymer, the hydrogels exhibited higher Young's moduli and elongations at break, which was attributed to the crystalline domains of PEO and the flexible characteristics of the hydrophobic blocks. The mechanical properties of the hydrogels, however, significantly deteriorated when they were hydrated in distilled water; this was primarily ascribed to the disappearance of PEO crystallity. The water capacity of hydrogels at 37°C in phosphate‐buffered saline (PBS) (pH = 7.4) was dominantly dependant on PEO content, which also influenced the thermonegative swelling behavior. From the bacterial adhesion tests, it was evident that both S. epidermidis and E. coli adhered to Pellethane much greater than to the hydrogels, regardless of the preadsorption of albumin. Better resistance to bacterial adhesion was observed in hydrogels with longer PEO chains, with PTMO as a hydrophobic block, and with MPEO grafts. The least bacterial adhesion for both species was achieved on MPEO2k–PTMO, a hydrogel with MPEO grafts. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1505–1514, 2003  相似文献   

7.
To enhance the mechanical strength of poly(ethylene glycol)(PEG) gels and to provide functional groups for surface modification, we prepared interpenetrating (IPN) hydrogels by incorporating poly(2‐hydroxyethyl methacrylate)(PHEMA) inside PEG hydrogels. Formation of IPN hydrogels was confirmed by measuring the weight percent gain of the hydrogels after incorporation of PHEMA, as well as by ATR/FTIR analysis. Synthesis of IPN hydrogels with a high PHEMA content resulted in optically transparent and extensively crosslinked hydrogels with a lower water content and a 6 ~ 8‐fold improvement in mechanical properties than PEG hydrogels. Incorporation of less than 90 wt % PHEMA resulted in opaque hydrogels due to phase separation between water and PHEMA. To overcome the poor cell adhesion properties of the IPN hydrogels, collagen was covalently grafted to the surface of IPN hydrogels via carbamate linkages to hydroxyl groups in PHEMA. Resultant IPN hydrogels were proven to be noncytotoxic and cell adhesion study revealed that collagen immobilization resulted in a significant improvement of cell adhesion and spreading on the IPN hydrogel surfaces. The resultant IPN hydrogels were noncytotoxic, and a cell adhesion study revealed that collagen immobilization improved cell adhesion and spreading on the IPN hydrogel surfaces significantly. These results indicate that PEG/PHEMA IPN hydrogels are highly promising biomaterials that can be used in artificial corneas and a variety of other load‐bearing tissue engineering applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Enzymatic crosslinking was developed to prepare in situ forming poly(γ‐glutamic acid) (γ‐PGA) based hydrogel in this study. First, the precursor of poly(γ‐glutamic acid)–tyramine (γ‐PGA–Ty) was synthesized through the reaction of carboxyl groups from a γ‐PGA backbone with tyramine. The structure of the grafted precursor was confirmed by 1H‐NMR and Fourier transform infrared spectroscopy. After that, the crosslinking of the phenol‐containing γ‐PGA–Ty precursor was triggered by horseradish peroxidase in the presence of H2O2; this resulted in the formation of the γ‐PGA–Ty hydrogels. The equilibrium water content, morphology, enzymatic degradation rate, and mechanical properties of the hydrogels were characterized in detail. The data revealed that the well‐interconnected hydrogels had tunable water contents, mechanical properties, and degradability through adjustments of the composition. Furthermore, cell experiments proved the biocompatibility of the hydrogels by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay. These characteristics provide an opportunity for the in situ formation of injectable biohydrogels as potential candidates in cell encapsulation and drug delivery. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42301.  相似文献   

9.
In this study, a series of poly(acrylamide‐co‐acrylic acid‐co‐2‐hydroxy ethyl actylate) [AM‐co‐AA‐co‐HEA] hydrogels have been synthesized by varying the acrylic acid (AA)content over eightfold in feed in the range of 33.34–93.76% by keeping other monomer constant. These hydrogels were characterized by FTIR, SEM analysis, elemental analysis, residual acrylic acid analysis, network parameters, and dynamic swelling behavior. The swelling study showed that equilibrium swelling ratio was nonlinearly increased with increasing AA content. Interestingly, the equilibrium swelling ratio decreased from 53.42 to 48.52 for 75–80% AA content hydrogel. The swelling data were found to satisfactorily fit Fick's second law, demonstrating that diffusion rate of water uptake was primarily Fickian. From model fitting, it was observed that early model was applicable for first 30% water absorption, and late model was applicable for latter 70% water absorption for increasing AA content from 33.34–90.90%. For 93.76% AA, early‐time model was extended up to first 50% of water absorption and late model was contracted for latter 50% water absorption, indicating that excessive AA content affects the applicability range of early‐time and late‐time diffusion models for water absorption. Etters model was best applicable to all type of hydrogels and followed over all swelling range. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Core–shell hydrogel latexes, composed of a poly(2‐hydroxyethyl methacrylate) (PHEMA) core chemically coated with chitosan (CS) shell, were synthesized via an emulsifier‐free emulsion polymerization, free radically initiated by a redox couple of tert‐butyl hydroperoxide and amine groups on CS itself. The variation of some polymerization parameters [e.g., polymerization time, CS/2‐hydroxyethyl methacrylate (HEMA) weight ratio, and content of crosslinker] was systematically investigated in this study. We found that the weight ratios between CS and the HEMA monomer influenced the course of polymerization, which was traced by the change in percentage monomer conversions, and the colloidal stability of the PHEMA–CS hydrogel latexes obtained. Moreover, the polymerization time affected their particle sizes and surface charges. For the colloidally stable PHEMA–CS hydrogel latexes, their sizes and charges ranged from 600 to 689 nm and from 32 to 51 mV, respectively. N,N′‐Methylene bisacrylamide was used as a crosslinking agent for the core component; this was found to be able to enhance the hydrogels' thermal stability and water uptake. Moreover, the 3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5‐diphenyltetrazolium bromide assay showed that 100% cell viability was achieved during the treatment of the PHEMA–CS latex (0.2–2.5 mg/mL) with Caco‐2 cells. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40003.  相似文献   

11.
The continued interest in graft copolymer architectures arises from their unique solution properties and potential for a myriad of applications ranging from drug delivery to adhesives. Poly(vinyl pyrrolidone) (PVP) represents a popular amorphous, water‐soluble polymer used as a polymeric binder in binder jetting additive manufacturing, as fillers in cosmetic products, and for subcutaneous drug delivery systems. This report describes the synthesis of poly(2‐oxazoline) and PVP graft copolymers using a ‘grafting to’ methodology with an efficient thiol–ene ‘click’ reaction. Copolymerization of 2‐methyl‐2‐oxazoline and 2‐(3‐butenyl)‐2‐oxazoline introduced pendent vinyl grafting sites with a predictable absolute number‐average molecular weight. In parallel, reversible addition‐fragmentation chain‐transfer polymerization and subsequent aminolysis yielded well‐defined, oligomeric, thiol‐terminated PVP. Thiol–ene click chemistry enabled the formation of poly(2‐oxazoline)‐graft‐poly(vinyl pyrrolidone) (PMeOx‐g‐PVP) copolymers with varying mole percent grafting sites and PVP graft length. 1H NMR spectroscopy, aqueous SEC with multiangle light scattering (SEC‐MALS), and bromine titrations confirmed chemical structure, and DSC with TGA elucidated thermal transitions. Aqueous SEC‐MALS and 1H NMR spectroscopy also determined absolute number‐ and weight‐average molecular weights and average grafting levels, which revealed optimal reaction conditions. Zero‐shear viscosities of 5 and 10 wt% solutions in deionized water for each graft copolymer compared to their linear analogs demonstrated a significant (ca 31%) decrease in viscosity at the same number‐average molecular weight. This decrease in solution viscosity suggested PMeOx‐g‐PVP copolymers as exceptional alternatives to linear analogs for aqueous‐based, binder jetting additive manufacturing.  相似文献   

12.
Two different hydrogels, prepared from N‐vinyl‐2‐pyrrolidone/acrylic acid (NVP/AAc) and N‐vinyl‐2‐pyrrolidone/acrylamide (NVP/AAm), were studied for the separation and extraction of some heavy‐metal ions from wastewater. The hydrogels were prepared by the γ‐radiation‐induced copolymerization of the aforementioned binary monomer mixtures. Further modification was carried out for the NVP/AAc copolymer through an alkaline treatment to improve the swelling behavior by the conversion of the carboxylic acid groups into its sodium salts. The thermal stability and swelling properties were also investigated as functions of the N‐vinyl‐2‐pyrrolidone content. The characterization and some selected properties of the prepared hydrogels were studied, and the possibility of their practical use in wastewater treatment for heavy metals such as Cu, Ni, Co, and Cr was investigated. The maximum uptake for a given metal was higher for a treated NVP/AAc hydrogel than for an untreated NVP/AAc hydrogel and was higher for an untreated NVP/AAc hydrogel than for an NVP/AAm hydrogel. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2642–2652, 2004  相似文献   

13.
In this study, poly(dimethylsiloxane)urethane–graft–poly(methyl methacrylate) (PDMS urethane–g–PMMA) copolymers with low crosslinking density were synthesized. Glass transition temperatures of the copolymers were investigated by dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). Results confirm that PDMS urethane–g–PMMA is miscible in the 2,4‐TDI (2,4‐ toluene diisocyanate) system, whereas it is partially miscible in the m‐XDI (m‐xylene diisocyanate) system. Free, intra‐ (urethane–urethane), and inter‐ (urethane–ester) association hydrogen bonding exist in the urethane group of copolymers. The inter‐association hydrogen bonding can improve the compatibility of the copolymer components. The relationship between the frequency shift and enthalpy confirm the distribution of hydrogen bonding in the macromonomer and copolymer. Ninety percent of the hydrogen bonding is by interassociation in the 2,4‐TDI system. The intra‐association hydrogen bonding in the m‐XDI system is higher than that in the 2,4‐TDI system. Consequently, aggregation may occur easily in the siloxane‐grafted chain in the m‐XDI system. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 962–972, 2002  相似文献   

14.
A series of novel nanocomposite hydrogels were prepared by a cross‐linking copolymerization method. Structural and morphological characterizations of the nanocomposite hydrogels revealed that a good compatibility exists between poly(acrylamide‐co‐sodium methacrylate) [P(AM‐co‐SMA)] and carboxyl‐functionalized carbon nanotubes (MWNTs–COOH). The P(AM‐co‐SMA)/MWNTs–COOH nanocomposite hydrogels with a suitable MWNTs–COOH loading exhibited better swelling capability, higher pH sensitivity, good reversibility, and repeatability, and rapid response to external pH stimuli, compared with the P(AM‐co‐SMA). The compression mechanical tests revealed that the nanocomposite hydrogel displayed excellent compressive strengths and elastic mechanical properties, with higher ultimate compressive stress, and meanwhile still retain a good recoverable strain in the presence of MWNTs–COOH. These excellent properties may primarily be attributed to effectively dispersing of a suitable MWNTs–COOH loading into the matrix of the polymers and formation of additional hydrogen bonds. The nanocomposite hydrogels were expected to find applications in drug controlled release and issue engineering. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

15.
Some structural features of hydrogels from poly(acrylic acid) (PAAc) of various crosslinking degrees have been investigated through mechanical and swelling measurements. Interpenetrating polymer hydrogels (IPHs) of poly(vinyl alcohol) (PVA) and PAAc have been prepared by a sequential method: crosslinked PAAc chains were formed in aqueous solution by crosslinking copolymerization of acrylic acid and N,N‐methylenebisacrylamide in the presence of PVA. The application of freeze–thaw (F–T) cycles leads to the formation of a PVA hydrogel within the synthesized PAAc hydrogel. The swelling and viscoelastic properties of the IPHs were evaluated as a function of the content of crosslinker and the application of one F–T cycle. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5789–5794, 2006  相似文献   

16.
Copolymers composed of poly(vinyl alcohol) (PVA) and poly(dimethylsiloxane) (PDMS) were crosslinked with chitosan to prepare semi‐interpenetrating polymer network (IPN) hydrogels by an ultraviolet (UV) irradiation method for application as potential biomedical materials. PVA/PDMS copolymer and chitosan was cast to prepare hydrogel films, followed by a subsequent crosslinking with 2,2‐dimethoxy‐2‐phenylacetophenone as a nontoxic photoinitiator by UV irradiation. Various semi‐interpenetrating polymer networks (semi‐IPNs) were prepared from different weight ratios of chitosan and the copolymer of PVA/PDMS. Photocrosslinked hydrogels exhibited an equilibrium water content (EWC) in the range of 65–95%. Swelling behaviors of these hydrogels were studied by immersion of the gels in various buffer solutions. Particularly, the PCN13 as the highest chitosan weight ratio in semi‐IPN hydrogels showed the highest EWC in time‐dependent and pH‐dependent swelling. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2591–2596, 2002  相似文献   

17.
Several types of poly(methyl methacrylate)/poly(dimethyl siloxane) graft copolymers (PMMA‐g‐PDMS) were synthesized using macromonomer technology. Three types of PMMA‐g‐PDMS with different PDMS chain length were obtained. The effect of siloxane chain length on surface segregation of PMMA‐g‐PDMS/poly(2‐ethylhexyl acrylate‐co‐acrylic acid‐co‐vinyl acetate)[P(2EHA‐AA‐VAc)] blends was investigated. The blends of PMMA‐g‐PDMS with P(2EHA‐AA‐VAc) showed surface segregations of PDMS components. The surface enrichments of PDMS in the blends depended on the PDMS chain length, significantly. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1736–1740, 2002  相似文献   

18.
Poly(siloxane‐ether‐urethane)‐acrylic (PU‐AC) hybrid emulsions were prepared by introducing different hydroxyethoxypropyl‐terminated polydimethylsiloxane (PDMS) content into the acrylic‐terminated poly(ether‐urethane) backbone and then in situ copolymerizing with methyl methacrylate and butyl acrylate via emulsion process. The effects of PDMS on the particle size and viscoelastic behavior of the hybrid emulsions were investigated. Meanwhile, the hydrogen bonding, mechanical and thermal mechanical properties, water resistance, the surface gloss, and wettability of the resultant hybrid films were also studied. The results showed that all the hybrid emulsions showed shear‐thinning behaviors, and the introduction of PDMS resulted in the formation of the hybrid emulsions with increased average particle size and decreased viscosity. The chemical bonds built between PU and AC yielded higher than 73% crosslinking fraction in all the hybrid materials, but this value decreased with increasing PDMS content because PDMS reduced the hydrogen bonding interactions and enhanced the phase separation. As a result, an increase in the PDMS content led to an increase in the elongation, water resistance, surface roughness, and water hydrophobic of the films, but the tensile strength, hardness, storage modulus, and glass transitions temperature decreased. It is suggested that introduction of PDMS can provide the hybrid materials with the improved flexibility, water resistance, and surface hydrophobicity, which has potential application value in the fouling‐release coatings, biomaterials, and surface fishing. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44927.  相似文献   

19.
Temperature‐sensitive poly[(2‐diethylaminoethyl methacrylate)‐co‐(N,N‐dimethylacrylamide)] [P(DEAEMA‐co‐DMAAm)] hydrogels with five different DMAAm contents were synthesized with and without the addition of sodium carbonate as porosity generator. The synthesized hydrogels were characterized with dry gel density measurements, scanning electron microscopy observation and the determination of swelling ratio. The influence of the pore‐forming agent and content of DMAAm on swelling ratio and network parameters such as polymer–solvent interaction parameter (χ), average molecular mass between crosslinks (M?c) and mesh size (ζ) of the cryogels are reported and discussed. The swelling and deswelling rates of the porous hydrogels are much faster than for the same type of hydrogels prepared via conventional methods. At a temperature below the volume phase transition temperature, the macroporous hydrogels also absorbed larger amounts water compared to that of conventional hydrogels and showed obviously higher equilibrated swelling ratios in aqueous medium. In particular, the unique macroporous structure provided numerous water channels for water diffusion in or out of the matrix and, therefore, an improved response rate to the external temperature changes during the deswelling and swelling processes. These properties are attributed to the macroporous and regularly arranged network of the porous hydrogels. Scanning electron micrographs reveal that the macroporous network structure of the hydrogels can be adjusted by applying porosity generation methods during the polymerization reaction. Copyright © 2007 Society of Chemical Industry  相似文献   

20.
Temperature‐sensitive poly(N‐isopropylacrylamide) hydrogels were successfully synthesized by using poly(ethylene oxide) as the interpenetrating agent. The newly prepared semi‐interpenetrating polymer network (semi‐IPN) hydrogels exhibited much better properties as temperature‐sensitive polymers than they did in the past. Characterizations of the IPN hydrogels were investigated using a swelling experiment, FTIR spectroscopy, and differential scanning calorimetry (DSC). Semi‐IPN hydrogels exhibited a relatively high temperature dependent swelling ratio in the range of 23–28 at room temperature. DSC was used for the determination of the lower critical solution temperature of the semi‐IPN hydrogel. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3032–3036, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号