首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the basis of 2‐hydroxyl‐2‐methyl‐1‐phenylpropanone (HMPP) and poly(ethylene glycol) (PEG), we prepared amphiphilic macrophotoinitiators (HMPP–PEG–HMPP) by first reacting HMPP with isophorone diisocyanate and subsequently reacting it with PEGs with different chain lengths. Fourier transform infrared spectroscopy, high‐performance liquid chromatography, and 1H‐NMR were used to confirm the structure of the amphiphilic macrophotoinitiators. Ultraviolet (UV) absorption spectra showed that the amphiphilic macrophotoinitiators had maximum absorption wavelengths that were similar to those of the low‐molecular‐weight photoinitiator HMPP. The photolysis rate of the amphiphilic macrophotoinitiators was slightly lower than that of HMPP, but the migration rate of the amphiphilic macrophotoinitiators from a UV‐cured matrix was much lower compared to that of HMPP. Because of their amphiphilic nature, these macrophotoinitiators may play roles as both photoinitiators and emulsifiers, and they have been applied to the solution polymerization of water‐soluble monomer acrylamide in water and the emulsion polymerization of methyl methacrylate. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43910.  相似文献   

2.
The wettability and crystallization behaviors of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV)‐graft‐polyacrylamide (PAM) films were studied. X‐ray photoelectron spectroscopy analyses illustrated that about 62 atom % of the total polar functionalities on the grafted film with 17% grafting percentage (GP) was amide groups. Wide‐angle X‐ray diffraction results suggest that grafted PAM induced defects in PHBV crystals and influenced their crystal structure. Differential scanning calorimetry (DSC) spectra showed the two melting regions, 60–90 and 145–170°C, of the imperfect PHBV crystals of the grafted films. Grafted PAM could suppress the recrystallization of PHBV, which was consistent with the polarizing optical microscopy results, in which the maximum PHBV spherulite diameter decreased from 350 μm for the PHBV film to 50 μm for the film with 53% GP. In addition, DSC studies revealed that the crystallinity of the grafted films decreased with increasing GP, which facilitated the diffusion of water into the films. The water contact angle of grafted films decreased and the water‐swelling percentage increased as GP went up. These results demonstrate the potential of PHBV‐g‐PAM for wettable surface constructs in tissue engineering applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

3.
Thermoresponsive poly(N‐isopropyl acrylamide) (PNIPAM)‐block‐hydroxy‐terminated polybutadine‐block‐PNIPAM triblock copolymers were synthesized by atom transfer radical polymerization; this was followed by the in situ epoxidation reaction of peracetic acid. The copolymers were characterized by 1H‐NMR, Fourier transform infrared spectroscopy, and size exclusion chromatography measurements, and their physicochemical properties in aqueous solution were investigated by surface tension measurement, fluorescent spectrometry, ultraviolet–visible transmittance, transmission electron microscopy observations, dynamic light scattering, and so on. The experimental results indicate that the epoxidized copolymer micelle aggregates retained a spherical core–shell micelle structure similar to the control sample. However, they possessed a decreased critical aggregate concentration (CAC), increased hydrodynamic diameters, and a high aggregation number and cloud point because of the incorporation of epoxy groups and so on. In particular, the epoxidized copolymer micelles assumed an improved loading capacity and entrapment efficiency of the drug, a preferable drug‐release profiles without an initial burst release, and a low cytotoxicity. Therefore, they were more suitable for the loading and delivery of the hydrophobic drug as a controlled release drug carrier. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41877.  相似文献   

4.
Plasma glow‐discharge application is known as a technique to coat or modify the surfaces of various materials. In this study, the influence of oxygen rf‐plasma treatment on surface and bulk properties of a biological polyester, poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate), were studied by determining water content and water contact angle, and by using X‐ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The plasma‐treated films absorbed more water than the untreated film, and the absorbance increased with the total power applied. The water contact angles decreased and O/C atomic ratio increased on treatment, indicating that the material became more hydrophilic due to increases in the oxygen‐containing functional groups on the surface of the polymer. A direct relation could be observed when the O/C ratio was plotted against the total power applied (treatment duration × treatment power). SEM revealed a visual record of surface modification, the extent of which increased with increased total power. It was thus possible to alter the surface chemistry and relevant properties of the polymer film using oxygen plasma as a tool. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1285–1289, 2003  相似文献   

5.
Poly(N‐isopropyl acrylamide) (PNIPAAm)‐graft‐poly(ethylene oxide) (PEO) hydrogels crosslinked by poly(?‐caprolactone) diacrylate were prepared, and their microstructures were investigated. The swelling/deswelling kinetics and compression strength were measured. The relationship between the structure and properties of hydrogel are discussed. It was found that the PEO comb‐type grafted structure reduced the thermosensitivity and increased the compression strength. The addition of poly(?‐caprolactone) (PCL) accelerated the deswelling rate of the hydrogels. Meanwhile, the entanglement of PCL chains restrained the further swelling of the network of gels. The PCL crosslinking agent and PEO comb‐type grafted structure made the behavior of the hydrogels deviate from the rubber elasticity equations. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
Hydrolyzed collagen‐grafted‐poly[(acrylic acid)‐co‐(methacrylic acid)] hydrogels were synthesized by solution polymerization and confirmed by infrared spectroscopy. From sequential univariate analysis, the optimal molar ratio of acrylic acid: methacrylic acid was 92:8 in the presence of N,N′‐methylenebisacrylamide, ammonium persulfate, and N,N,N′,N′‐tetramethylethylenediamine at 0.12, 0.015, and 0.2% mol of the monomers, respectively. The water absorbency of this hydrogel was both pH‐ and temperature‐dependent, but was higher in nonbuffered water than in boric acid/citric acid/phosphate buffer under the same conditions. The optimal hydrogel could swiftly swell and deswell in neutral and acid solutions, respectively. Its potential application in drug delivery was examined using insulin and methylene blue as model payload drugs. Loading in a 50% (v v?1) ethanol solution gave a higher insulin loading level than in the buffer water. Insulin and methylene blue were both released at pH 6.8 but not at pH 1.2, but followed first order kinetics and the Higuchi equation, respectively. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45654.  相似文献   

7.
In this study, a novel temperature‐sensitive polymer, poly(N‐2‐methoxyisopropylacrylamide), PNMIPA, in the crosslinked hydrogel form was obtained. The monomer, N‐2‐methoxyisopropylacrylamide (NMIPA) was synthesized by the nucleophilic substitution reactions of acryloyl chloride with 2‐methoxyisopropylamine. Hydrogel matrix of PNMIPA was obtained by the bulk polymerization method. The bulk polymerization experiments were performed at +4°C, by using N,N‐methylenebisacrylamide (MBA) as crosslinker, polyethyleneglycol (PEG) 4000 as diluent, and potassium persulfate (KPS) and tetramethylethylenediamine (TEMED) as the initiator and accelerator, respectively. The same polymerization procedures were applied by changing monomer, initiator, crosslinker and diluent concentrations in order to obtain crosslinked gel structures having different temperature–sensitivity properties. The equilibrium swelling ratio of PNIMPA gel matrices at constant temperature increased with increasing initiator concentration and decreasing monomer concentration. The use of PEG 4000 as diluent in the gel synthesis resulted in about two times increase in equilibrium swelling ratios in the low temperature region. A decrease in the equilibrium swelling ratios of gel matrices started at 30°C and the decrease became insignificant at 55°C. Temperature‐sensitivities were determined in two different media. Distilled water medium was used in order to observe the temperature‐sensitivity of the gel clearly and the phosphate buffer medium was used in order to represent the temperature‐sensitive swelling behavior of the gel when it is used in biological media. Step effect was applied on ambient temperature in two opposite directions in order to examine the dynamic swelling and shrinking behaviors of the gels. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
The annihilation of the radicals in irradiated 2‐hydroxyethyl methacrylate copolymer was analyzed by the use of electron paramagnetic resonance (EPR) spectroscopy. The EPR spectra were deconvoluted into three radicals: a quartet (Ra), a triplet (Rb), and a broad singlet (Rc). Radical Ra was attributed to coupling with a methyl radical and/or a doublet or triplet with about the same hyperfine coupling due to a methylene radical. Radical Rb was due to a methylene radical produced by main‐chain scission. Radical Rc was attributed to various free radicals without coupling to protons. By comparing the EPR spectra of radicals Ra, Rb, and Rc with the spectrum of a 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) standard with a known spin number, we calculated the spin numbers of the radicals, which decreased with time in the temperature range 25–45°C, regardless of the irradiation dose. The annealing of Ra and Rb and the annealing of Rc at longer times followed second‐order kinetics; these were different from the kinetics for the color formation and defect‐controlled hardening of polymers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
In this work, biocompatible hydrogel matrices for wound‐dressing materials and controlled drug‐release systems were prepared from poly[hydroxyethyl methacrylate‐co‐poly(ethylene glycol)–methacrylate] [p(HEMA‐co‐PEG–MA] films via UV‐initiated photopolymerization. The characterization of the hydrogels was conducted with swelling experiments, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis (differential scanning calorimetry), and contact‐angle studies. The water absorbency of the hydrogel films significantly changed with the change of the medium pH from 4.0 to 7.4. The thermal stability of the copolymer was lowered by an increase in the ratio of poly(ethylene glycol) (PEG) to methacrylate (MA) in the film structure. Contact‐angle measurements on the surface of the p(HEMA‐co‐PEG–MA) films demonstrated that the copolymer gave rise to a significant hydrophilic surface in comparison with the homopolymer of 2‐hydroxyethyl methacrylate (HEMA). The blood protein adsorption was significantly reduced on the surface of the copolymer hydrogels in comparison with the control homopolymer of HEMA. Model antibiotic (i.e., minocycline) release experiments were performed in physiological buffer saline solutions with a continuous flow release system. The amount of minocycline release was shown to be dependent on the HEMA/PEG–MA ratio. The hydrogels have good antifouling properties and therefore are suitable candidates for wound dressing and other tissue engineering applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Biomaterials that provide 3D‐like in vitro cell survival and proliferation are increasingly used to mimic the extracellular microenvironment in the context of a better understanding of tumorigenesis. In this study, a simple, affordable and fast technique to fabricate hydrogel matrices composed of poly(ethylene glycol) (PEG) and poly(l ‐lysine) (PLL) (as cell‐adhesive factor) were used to provide in vitro glioma cell growth. After UV photopolymerization of a precursor solution containing PEG‐diacrylate and easily obtainable PLL‐acrylate derivatives, F98 and U87‐MG cells (rat and human glioblastoma cell lines, respectively) were grown on top of different substrates that consist of combinations of PEG/PLL hydrogels and spontaneously formed cell aggregates of homogeneous sizes. Depending on the cell type, PEG and PLL concentrations, the cell aggregates patterns were different. The optimal combination to obtain cell survival and proliferation for both cell lines was determined as 3% PEG (w/v) and 0.001% PLL (w/v). This technique was also used to assess the efficacy of temozolomide and should be adaptable to other cancer cell lines to follow pseudo‐tumor growth in vitro. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46287.  相似文献   

11.
The antimicrobial polymer/polymer macrocomplexes were synthesized by radical alternating copolymerization of N‐vinyl‐2‐pyrrolidone with maleic anhydride [poly(VP‐alt‐MA)] with 2,2′‐azobis‐isobutyronitrile as an initiator at 65°C in dioxane solutions under nitrogen atmosphere, and interaction of prepared copolymer with poly(ethylene imine) (PEI) in aqueous solutions. The susceptibility of some Gram‐negative (Salmonella enteritidis and Escherichia coli) and Gram‐positive (Staphylococcus aureus and Listeria monocytogenes) bacteria to the alternating copolymer and its PEI macrocomplexes with different compositions in microbiological medium was studied using pour‐plate technique. All the studied polymers, containing biologically active moieties in the form of ionized cyclic amide, and macrobranched aliphatic amine groups and acid/amine complexed fragments, were more effective against L. monocytogenes than those for Gram‐positive S. aureus bacterium. This fact was explained by different surface layer structural architectures of biomacromolecules of tested bacteria. The resulting polymeric antimicrobial materials are expected to be used in various areas of medicine and food industry. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5841–5847, 2006  相似文献   

12.
A thermosensitive amphiphilic triblock copolymer, poly(d,l ‐lactide) (PLA)‐b‐poly(N‐isopropyl acrylamide) (PNIPAAM)‐b‐PLA, was synthesized by the ring‐opening polymerization of d,l ‐lactide; the reaction was initiated from a dihydroxy‐terminated poly(N‐isopropyl acrylamide) homopolymer (HO‐PNIPAAM‐OH) created by radical polymerization. The molecular structure, thermosensitive characteristics, and micellization behavior of the obtained triblock copolymer were characterized with Fourier transform infrared spectroscopy, 1H‐NMR, gel permeation chromatography, dynamic light scattering, and transmission electron microscopy. The obtained results indicate that the composition of PLA‐b‐PNIPAAM‐b‐PLA was in good agreement with what was preconceived. This copolymer could self‐assemble into spherical core–shell micelles (ca. 75–80 nm) in aqueous solution and exhibited a phase‐transition temperature around 26 °C. Furthermore, the drug‐delivery properties of the PLA‐b‐PNIPAAM‐b‐PLA micelles were investigated. The drug‐release test indicated that the synthesized PLA‐b‐PNIPAAM‐b‐PLA micelles could be used as nanocarriers of the anticancer drug adriamycin (ADR) to effectively control the release of the drug. The drug‐delivery properties of PLA‐b‐PNIPAAM‐b‐PLA showed obvious thermosensitive characteristics, and the release time of ADR could be extended to 50 h. This represents a significant improvement from previous PNIPAAM‐based drug‐delivery systems. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45304.  相似文献   

13.
A series of star‐shaped poly(2‐ethyl‐2‐oxazoline)s was prepared by cationic polymerization. The polymerization was initiated by dipentaerythrityl hexakis(4‐nitrobenzene sulfonate) and a tosylated hyperbranched polymer of glycidol. The polymerization proceeded in a controlled manner. The star structure of the products was determined by nuclear magnetic resonance. The molar mass distributions that were measured by gel permeation chromatography with multiangle laser light scattering were narrow, and the experimental values of the molar masses were close to those predicted. The very compact structure of the polymers obtained (compared with the linear counterparts) confirmed the star formation. The star poly(2‐ethyl‐2‐oxazoline)s show a phase transition temperature in the range 62–75 °C. Comparison of this phase transition temperature with that of the linear poly(2‐ethyl‐2‐oxazoline)s with the same molar masses indicates the influence of molar mass and topological structure of the macromolecule on temperature behavior. The prepared copolymers are spherical, which might be useful for the controlled transport and release of active compounds. Copyright © 2011 Society of Chemical Industry  相似文献   

14.
The preparation of honeycomb‐patterned microporous films from a soluble fluorinated poly(siloxane imide) segmented copolymer (PSI) by means of water‐droplet templating is reported first in this article. The fluorinated PSI was synthesized from 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride, 2,2‐bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane, and diamine‐terminated poly(dimethyl siloxane) by condensation polymerization. The obtained copolymer had good solubility in chlorinated solvents (chloroform, dichloromethane, and 1,2‐dichloroethane), good thermal stability, and a microphase‐separated amorphous structure. The effects of the copolymer concentration, atmospheric humidity, and solvent properties on the pattern formation were investigated. The results show that the film fabricated from the copolymer solution with chloroform as the solvent at a humidity of 90% and a concentration of 0.5 g/L had the most regular honeycomb‐patterned micropores. We could tailor the pore shape and size by changing the copolymer concentration or the atmospheric humidity. The prepared regular honeycomb‐patterned microporous PSI films have potential applications in cell culture and tissue engineering. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
A synthesized copolymer, synthesized from HFMA (hexaflurobutyl methacrylate) and SPEG (PHFMA‐g‐PSPEG), was synthesized. PHFMA‐g‐PSPEG intercalated to the DNA base pair via a strong hydrophobic force, and this was conformed by ultraviolet spectroscopy, transmittance measurements, micropolarity measurements, resonance light scattering (RLS) spectroscopy, and particle size measurements. The copolymer was used as a new probe to detect DNA according to the RLS technique. The hydrophobic interaction between PHFMA‐g‐PSPEG and DNA significantly enhanced the RLS signal, and the enhanced RLS intensity at 422 nm was proportional to the nucleic acid concentration within the range of 0.09–0.90 mg/L with a detection limit (3σ) of 4.0 μg/L. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
This report describes the preparation and swelling behaviour of novel hydrogels based on a water‐soluble dimethacrylate monomer (EBisEMA), which is characterized by a relatively high molar mass (Mn ~ 1700 g mol?1) and contains a high proportion of aliphatic ether bonds in its structure. This feature results in moderately crosslinked and flexible polymer networks. Significant differences were observed in degree of swelling, depending on the synthesis method employed to obtain the hydrogels. The equilibrium water sorption of EBisEMA photopolymerized in bulk was 68 wt% while that of EBisEMA photopolymerized in aqueous solution (0.5 g mL?1) was 104 wt%. Thiol–methacrylate hydrogels were prepared by visible light photopolymerization of EBisEMA with a tetrafunctional thiol (PETMP) at various EBisEMA‐to‐PETMP molar ratios. These hydrogels contained unreacted thiol groups because of a faster homopolymerization reaction of EBisEMA. Hydrogels were also prepared in bulk by propylamine‐catalysed Michael addition reaction. No significant differences in swelling were observed between EBisEMA homopolymer and photocured EBisEMA–PETMP copolymer. Conversely, a marked increase in water uptake (110 wt%) was observed in the EBisEMA–PETMP hydrogels prepared by the Michael addition reaction catalysed by propylamine. These trends are explained in terms of a balance between the mass fraction of hydrophilic groups and the crosslinking density of the network. EBisEMA–PETMP hydrogels formulated with thiol in excess showed a noticeable tendency to adhere to diverse substrates, including paper, metals, glass and skin. This feature makes them especially attractive in applications for which adhesion is particularly critical such as dermatological patches. © 2018 Society of Chemical Industry  相似文献   

17.
Metal‐chelating membranes have advantages as adsorbents in comparison with conventional beads because they are not compressible and they eliminate internal diffusion limitations. The aim of this study was to explore in detail the performance of poly(2‐hydroxyethyl methacrylate–methacryloylamidohistidine) [poly(HEMA–MAH)] membranes for the removal of three toxic heavy‐metal ions—Cd(II), Pb(II), and Hg(II)—from aquatic systems. The poly(HEMA–MAH) membranes were characterized with scanning electron microscopy and 1H‐NMR spectroscopy. The adsorption capacity of the poly(HEMA–MAH) membranes for the selected heavy‐metal ions from aqueous media containing different amounts of these ions (30–500 mg/L) and at different pH values (3.0–7.0) was investigated. The adsorption capacity of the membranes increased with time during the first 60 min and then leveled off toward the equilibrium adsorption. The maximum amounts of the heavy‐metal ions adsorbed were 8.2, 31.5, and 23.2 mg/g for Cd(II), Pb(II), and Hg(II), respectively. The competitive adsorption of the metal ions was also studied. When the metal ions competed, the adsorbed amounts were 2.9 mg of Cd(II)/g, 14.8 mg of Pb(II)/g, and 9.4 mg of Hg(II)/g. The poly(HEMA–MAH) membranes could be regenerated via washing with a solution of nitric acid (0.01M). The desorption ratio was as high as 97%. These membranes were suitable for repeated use for more than three adsorption/desorption cycles with negligible loss in the adsorption capacity. The stability constants for the metal‐ion/2‐methacryloylamidohistidine complexes were calculated to be 3.47 × 106, 7.75 × 107, and 2.01 × 107 L/mol for Cd(II), Pb(II), and Hg(II) ions, respectively, with the Ruzic method. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1213–1219, 2005  相似文献   

18.
This study examines the isothermal treatment of poly(3‐hydroxybutyrate) (PHB) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) powders and films. The PHB and PHBV crystallinities were determined using X‐ray diffractometry, and shown to increase with temperature (130–150°C) and then decreased from 55% to 45% at 180°C. The crystal morphology of crystal planes (101) and (111) became sharp at a high temperature. The weight average molecular weight (Mw) of PHB decreased from 1,028,000 to 41,800 g/mol when heated at 180°C for 30 min. The molecular weight of PHB decreased more rapidly than that of PHBV with time. No peak signal was observed in gel permeation chromatography after heating at 150°C because the solubility of PHB changed with crystallinity. The thermal behaviors of PHB and PHBV were analyzed by differential scanning calorimetry and thermogravimetric analysis. The roughness, contact angle, and surface morphology of PHB and PHBV films were also measured to determine the surface properties. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3659–3667, 2013  相似文献   

19.
Thermoresponsive and pH‐responsive gels were synthesized from N‐isopropyl acrylamide (NIPA) and N,N′‐dimethyl aminoethyl methacrylate (DMAEMA) monomers. Gelation reactions were carried out with both conventional free‐radical polymerization (CFRP) and controlled free‐radical polymerization [reversible addition fragmentation transfer (RAFT)] techniques. The CFRP gels were prepared by polymerizing mixtures of NIPA and DMAEMA in 1,4‐dioxane in presence of N,N'‐methylene bisacrylamide (BIS) as cross‐linker. The RAFT gels were prepared by a the polymerization of NIPA via a similar process in the presence of different amounts of poly(N,N′‐dimethyl aminoethyl methacrylate) macro chain‐transfer agent and the crosslinker. These gels were characterized by scanning electron microscopy (SEM) and differential scanning calorimetry. SEM analysis revealed a macroporous network structure for the RAFT gels, whereas their volume phase‐transition temperatures (VPTTs) were found to be in the range 32–34°C, close to that of poly(N‐isopropyl acrylamide) gels. However, the CFRP copolymer gels exhibited a higher VPTT; this increased with increasing DMAEMA content. The RAFT gels exhibited higher swelling capabilities than the corresponding CFRP gels and also showed faster shrinking–reswelling behavior in response to changes in temperature. All of the gels showed interesting pH‐responsive behavior as well. The unique structural attributes exhibited by the RAFT gels can potentially open up opportunities for developing new materials for various applications, for example, as adsorbents or carrier of drugs or biomolecules. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42749.  相似文献   

20.
Not much effort has been focused towards the development of hydrogels that swell in nonpolar solvents. We have synthesized a new set of polyelectrolyte hydrogels and demonstrated their ability to absorb a less‐polar or nonpolar organic solvent, as well as their ability to resist gel‐collapse in a predominantly nonpolar medium. The hydrogels were prepared by free radical polymerization of different molar ratios of poly(ethylene glycol) methyl ether acrylate and (3‐(methacryloylamino)propyl)‐trimethyl ammonium chloride as comonomers in an aqueous medium. Their swelling behavior in organic solvents was studied by varying the dielectric constant of the swelling medium including mixed‐solvent systems. Besides a high degree of swelling (up to 200 times) in polar solvents, some of the hydrogels also exhibited moderate swelling (up to 15 times) in less‐polar organic solvents. Hydrogels samples with high cationic content showed drastic change in swelling extent in some of the mixed‐solvent systems. It was also interesting to note that the retention of significant swelling in dimethyl sulphoxide–toluene mixture with even 90% toluene content for some compositions. These polyelectrolyte hydrogels with improved lipophilicity opens up greater opportunities for the development of even superior soft materials through proper structural optimizations that would successfully function for a wider range of solvents. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39873.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号