首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Polymer Composites》2017,38(1):185-191
Carbon fiber was blended into the polysulfone matrix by twin screw extruder. The polymer composites samples were prepared using four different processing technologies, the compression molding, edge‐gating injection molding, sprue‐gating injection molding, and the multi‐gating injection molding techniques. Among four techniques, the composite samples manufactured by multi‐gating injection molding technique got a higher value of thermal conductivity, which is due to the carbon fibers orientation and distribution. The experimental result indicated that the fiber orientation have a significant influence on the thermal conductivity of polymer composites. The thermal conductivity of sample made by multi‐gating injection molding was 1.82 W/(m·K) when the fiber content was 26 vol%, which was nearly twice than the values obtained by conventional technologies. POLYM. COMPOS., 38:185–191, 2017. © 2015 Society of Plastics Engineers  相似文献   

2.
Fiber‐reinforced thermoplastic for low weight application become increasingly important for many industrial branches. During the injection molding of short fiber‐reinforced thermoplastic parts the fibers become orientated. This orientation is determined on the one hand by the geometry of the part, and on the other hand by the injection molding parameters, and influence the mechanical behavior of the part. The determination of the fiber properties that is, the orientation distribution of the fibers, is therefore of considerable interest. Since a more accurate fiber orientation prediction of the injection molding simulation will lead to a more precise structural simulation the objective of the present work is to achieve a preferably accurate orientation distribution. To describe the orientation distribution of the fibers, the fiber orientation tensor defined by Advani and Tucker (Advani and Tucker, Journal of Rheology, 31, 751 (1987)) was used. To determine the entries of this tensor micro computed tomography scans (μCT‐scans) of an injection‐molded plate, as well as an injection‐molded specimen with different cross section and shape were performed. Injection molding simulation using Autodesk Moldflow Insight were carried out. The residual strain closure (RSC) model was the underlying model to depict the fiber orientation distribution, or rather the orientation tensors. The two model parameters, the fiber interaction coefficient Ci and the scalar factor κ , were adapted by an optimization procedure, in such a way that the orientation distributions of the simulations fit the results of the μCT‐analysis at its best. POLYM. ENG. SCI., 59:E152–E160, 2019. © 2018 Society of Plastics Engineers  相似文献   

3.
The performance of short fiber molded composite structures is determined uniquely by the properties of the molding material and the process induced fiber orientation. Consequently, the capability to accurately predict the fiber orientation distribution is of fundamental importance in computer-aided mold design. Methodology for the numerical prediction of fiber orientation during the mold-fill process is presented for a short glass fiber thermoset (57 percent phenolic resin, 10 percent calcium carbonate filler, and 33 percent glass fiber by volume). On the basis of a finite element flow characterization, Jeffery's orientation equation is numerically integrated along streamlines to calculate fiber orientation. Correlation of experimental and numerical results for an end-gated bar with a molded-in hole is reasonably good.  相似文献   

4.
基于Mori?Tanaka均匀化方法,对短纤维复合材料开孔板力学性能进行研究。首先,使用Mori?Tanaka方法预测单向和二维2种分布形式的短纤维复合材料应力?应变曲线曲线。其次,通过试验方法分析不同区域纤维取向对开孔板力学性能的影响。最后,使用多尺度方法研究不同注塑位置和不同开孔方式对开孔板力学性能的影响,该部分在宏观有限元分析中耦合了注塑模拟的纤维方向分布以及Mori?Tanaka均匀化方法得到的复合材料参数。结果表明,短边注塑开孔板综合力学性能更好;孔周围纤维分布是影响应力集中的主要因素;整体的纤维取向分布影响开孔板的刚度;单向纤维材料的角度对材料性能的影响不是单调的。  相似文献   

5.
Injection molding analysis programs were developed for CAE (Computer Aided Engineering) in injection molding of thermoplastics. The programs consist of mold cooling, polymer filling-packing-cooling, fiber orientation, material properties and stress analyses. These programs are integrated to predict warpage of molded parts by using a common geometric model of three dimensional thinwalled molded parts. The warpage is predicted from temperature difference between upper and lower surfaces, temperature distribution, flow induced shear stress, shrinkage, and anisotropic mechanical properties caused by fiber orientation in the integrated simulation. The integrated simulation was applied to predicting warpage of a 4-ribbed square plate of glass fiber reinforced polypropylene for examination of its validity. Predicted saddle-like warpage was in good agreement with experimental one.  相似文献   

6.
The present study numerically investigates a fiber orientation in injection‐molded short fiber reinforced thermoplastic composite by using a rheological model, which includes the nonlinear viscoelasticity of polymer and the anisotropic effect of fiber in the total stress. A nonisothermal transient‐filling process for a center‐gated disk geometry is analyzed by a finite element method using a discrete‐elastic‐viscous split stress formulation with a matrix logarithm for the viscoelastic fluid flow and a streamline upwind Petrov–Galerkin method for convection‐dominated problems. The numerical analysis result is compared to the experimental data available in the literature in terms of the fiber orientation in center‐gated disk. The effects of the fiber coupling and the slow‐orientation kinetics of the fiber are discussed. Also, the effect of the injection‐molding processing condition is discussed by varying the filling time and the mold temperature. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers  相似文献   

7.
A previously developed constitutive model for short-fiber reinforced thermoplastics is applied to an injection-molded component with a complex geometry and microstructure. This macro-scale continuum-based model is able to capture the anisotropic viscoelastic-viscoplastic response of the material. In injection-molded short-fiber composites, the anisotropic mechanical properties depend strongly on the fiber orientation distribution, which generally displays a marked variation throughout the product. This makes the material characterization and model application challenging. In this article, two characterization and model application strategies are proposed. These techniques, together with the developed constitutive model provide a strong tool for reliable prediction of the mechanical response of an injection molded product, where inputs to the finite element analysis are obtained directly from a numerical simulation of the injection molding process. In this article, from the output provided by an injection molding process simulation software such as Moldflow, the distribution of anisotropic elastic and plastic properties throughout the component is found and the data is imported to the finite element mesh. Mechanical tests are performed on a validation product and results are compared with model predictions from finite element simulations. Through this comparison, the performance of the constitutive model and also proposed procedures for characterization and model application are investigated.  相似文献   

8.
Orientation of reinforcement fibers in injection molded parts is a key factor in determining their strength and stiffness: therefore stress-strain analyses based on isotropic material models produce only rough results. We present a flow/strain analysis methodology that accounts for the actual anisotropic material properties and fiber orientation. Material properties are determined by experiment, fiber orientation is inferred from flow simulation results (velocity vectors). Stress/strain fields are calculated by means of finite element analysis. Results show that for notched parts molded from short glass reinforced polyamide resin, there is a significant dependence of the strain concentration on the local fiber orientation resulting from different injection molding conditions.  相似文献   

9.
Injection molding of fiber‐reinforced polymeric composites is increasing with demands of geometrically complex products possessing superior mechanical properties of high specific strength, high specific stiffness, and high impact resistance. Complex state of fiber orientation exists in injection molding of short fiber reinforced polymers. The orientation of fibers vary significantly across the thickness of injection‐molded part and can become a key feature of the finished product. Improving the mechanical properties of molded parts by managing the orientation of fibers during the process of injection molding is the basic motivation of this study. As a first step in this direction, the present results reveal the importance of packing pressure in orienting the fibers. In this study, the effects of pressure distribution and viscosity of a compressible polymeric composite melt on the state of fiber orientation after complete filling of a cavity is considered experimentally and compared with the simulation results of Moldflow analysis. POLYM. COMPOS. 28:214–223, 2007. © 2007 Society of Plastics Engineers  相似文献   

10.
This article demonstrates using sandwich injection molding in order to improve the mechanical properties of short glass fiber‐reinforced thermoplastic parts by investigating the effect of fiber orientation, phase separation, and fiber attrition compared to conventional injection molding. In the present case, the effect of short glass fiber content (varying from 0–40 wt%) within the skin and core materials were studied. The results show that the mechanical properties strongly depend not only on the fiber concentration, but also on the fiber orientation and the fiber length distribution inside the injection‐molded part. Slight discrepancies in the findings can be assumed to be due to fiber breakage occurring during the mode of processing. POLYM. COMPOS., 26:823–831, 2005. © 2005 Society of Plastics Engineers  相似文献   

11.
注塑工艺参数对长玻纤增强PA66复合材料力学性能的影响   总被引:1,自引:0,他引:1  
研究了注塑工艺参数对长玻纤增强PA66(LGF-PA66)复合材料力学性能和玻纤残余长度的影响。运用非连续纤维增强复合材料的拉伸强度和冲击强度模型来解释实验结果,并建立了工艺参数与LGF-PA66力学性能的关系曲线。结果表明:注塑工艺参数决定了玻纤的残余长度和取向,进而影响了LGF-PA66复合材料的力学性能。  相似文献   

12.
In this work, long basalt fiber reinforced composites were investigated and compared with short basalt fiber reinforced compounds. The results show that long fiber reinforced thermoplastic composites are particularly advantageous in the respects of dynamic mechanical properties and injection molding shrinkage. The fiber orientation in long basalt fiber reinforced products fundamentally differs from short basalt fiber reinforced ones. This results in more isotropic molding shrinkage in case of long basalt fiber reinforced composites. The main advantage of the used long fiber thermoplastic technology is that the special long fiber reinforced pellet can be processed by most conventional injection molding machines. During extrusion compounding the fibers in the compound containing 30 wt% fibers are fragmented to an average length of 0.48 mm (typical of short fiber reinforced thermoplastic compounds), this length decreases further during injection molding to 0.20 mm. Contrarily using long fiber reinforced pellets and cautious injection molding parameters, an average fiber length of 1.8 mm can be achieved with a conventional injection molding machine, which increased the average length/diameter ratio from 14 to 130. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

13.
The thermal conductivity of hemp fiber reinforced polymer composites were studied from the steady state temperature drop across samples exposed to a known heat flux. The transverse and in-plane thermal conductivities for oriented and randomly oriented composites for different volume fractions of fiber were investigated. Experimental results showed that the orientation of fibers has a significant effect on the thermal conductivity of composites. To validate the experimental results, the heating tests for the thermal conductivity measurements were simulated by a finite element model using the thermal conductivity values obtained from the experiments. Predicted temperatures show close agreement with measured temperatures. Moreover, the experimental results of thermal conductivities of composites at different directions were compared with two theoretical models and illustrated good agreement between the obtained results and models. POLYM. ENG. SCI. 47:977–983, 2007. © 2007 Society of Plastics Engineers  相似文献   

14.
研究了玻纤增强酚醛注塑料制备过程中基质树脂的选择、固化作用与交联结构的控制及玻纤分散技术,考察了不同基质树脂制备的酚醛注塑料的固化成型结构形态和固化流变特性.进一步采用热固性与热塑性酚醛树脂相复配的基质树脂体系,经配方和制备工艺的优化,制备了高填充量玻纤增强酚醛注塑料.该注塑料具有良好的注塑成型性能,注塑制品具有高强度, 冲击强度达到4.3 kJ•m-2,弯曲强度137.4 MPa,同时热变形温度为 245 ℃,阻燃性通过美国UL 94 V-0级认证,并具有优良的尺寸稳定性、电绝缘性能和低成本优势.  相似文献   

15.
张艺  许鹏飞  张来  付晓蓉 《广东化工》2011,38(10):5-6,10
采用数值模拟结合实验验证的方法,对聚丙稀(PP)注射成型(保压和不保压)冷却过程实验和数值模拟进行分析。用数据采集器对不同共混物注射冷却过程中的温度变化进行数据采集,并将采集所得温度的实验值与根据改进焓法用Matlab软件对聚丙烯冷却过程中温度分布进行数值模拟计算所得的值进行了比较分析,结果表明聚丙烯在液体冷却段温度分布的实验值与理论值几乎完全吻合,在结晶段和固体冷却段实验值略有不同。  相似文献   

16.
The mechanical properties of injection molded parts in glass reinforced materials are sensitive to processing. A successful design requires a good estimate of the product performance before production. Its performance is strongly affected by the fiber orientation field set up during processing. The fiber orientation pattern is complex and varies three‐dimensionally in the moldings. Some commercial simulation programs already allow the prediction of the fiber orientation induced during the flow by the associated stress field. The results from the simulations are dependent on a parameter accounting for the interactions between fibers during the flow, known as the fiber interaction coefficient. In this paper the effectiveness of the interaction parameter on controlling the predicted patterns of the fiber orientation is studied. This is done by comparing and analyzing the experimental data and the corresponding predictions.  相似文献   

17.
对短纤维-聚氨酯弹性体复合材料的注射充模及纤维取向分布进行了数值模拟和实验研究。结果表明,纤维取向分布主要取决于模腔几何形状,纤维含量和注射工艺条件等因素,在薄壁型腔的扩张流中,短纤维趋于与流线方向垂直,而在剪切流和收敛流中趋于与流线方向一致,纤维取向分布实验结果与数值模拟结果较一致,表明理论模型有一定的实用价值。  相似文献   

18.
Fiber reinforced plastics are multi-component materials for which physical properties are strongly dependent on fiber and resin structure. Despite the disruptive nature of recycling methods on such structures, these materials nevertheless can be recycled. In this report, the recyclability of a fiber-reinforced cyclic BPA polycarbonate has been studied. It is found that ground up composite is recyclable and possesses properties as good as or better than a comparable commercial composite. The processing techniques investigated herein are injection, extrusion compression, and compression molding. As expected, processing technique and parameters are important in determining the mechanical properties of the molded regrind. Our results show that injection and extrusion compression molding yield recycled composites with good tensile properties, though the impact strengths are relatively low. This is due to high fiber orientation and fiber bundle dispersion. On the other hand, compression molded samples, which show random fiber orientation and low fiber bundles dispersion have relatively low tensile properties, but excellent impact strength. Results are discussed in terms of microstructural details, which include resin molecular weight and fiber length and orientation.  相似文献   

19.
Epoxy resin nanocomposites incorporated with 0.5, 1, 2, and 4 wt % pristine graphene and modified graphene oxide (GO) nanoflakes were produced and used to fabricate carbon fiber‐reinforced and glass fiber‐reinforced composite panels via vacuum‐assisted resin transfer molding process. Mechanical and thermal properties of the composite panels—called hierarchical graphene composites—were determined according to ASTM standards. It was observed that the studied properties were improved consistently by increasing the amount of nanoinclusions. Particularly, in the presence of 4 wt % GO in the resin, tensile modulus, compressive strength, and flexural modulus of carbon fiber (glass fiber) composites were improved 15% (21%), 34% (84%), and 40% (68%), respectively. Likewise, with inclusion of 4 wt % pristine graphene in the resin, tensile modulus, compressive strength, and flexural modulus of carbon fiber (glass fiber) composites were improved 11% (7%), 30% (77%), and 34% (58%), respectively. Also, thermal conductivity of the carbon fiber (glass fiber) composites with 4% GO inclusion was improved 52% (89%). Similarly, thermal conductivity of the carbon fiber (glass fiber) composites with 4% pristine graphene inclusion was improved 45% (80%). The reported results indicate that both pristine graphene and modified GO nanoflakes are excellent options to enhance the mechanical and thermal properties of fiber‐reinforced polymeric composites and to make them viable replacement materials for metallic parts in different industries, such as wind energy, aerospace, marine, and automotive. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40826.  相似文献   

20.
The injection molding ability of long glass fiber reinforced polyamide pellets was studied. The injection moldable materials were produced by a melt impregnation process of continuous fiber rovings. The rovings were chopped to pellets of 9 mm length. Chopped pellets with a variation in the degree of impregnation and fiber concentration were studied. The injection molded samples were analyzed for fiber concentration, fiber length, and fiber orientation. Dumbbell-shaped tensile bars were made to evaluate the mechanical properties. The fibers in the tensile bars had a high orientation in the flow direction and minor fiber concentration gradients were observed. The fiber lengths decreased with fiber concentration from 1.6 mm for a 2 vol% to 0.6 mm for a 25 vol% system. The tensile and impact properties increased considerably with fiber concentration. A low degree of impregnation in the pellets of the fibers resulted in somewhat lower tensile and impact properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号