首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption behavior of poly(N,N‐dimethylacrylamide‐co‐Na 2‐acrylamido‐2‐methylpropanesulfonate), an enhanced oil recovery polymer, was studied. Adsorption isotherms show that adsorption on bentonite is very high followed by that on limestone that, in turn, is much higher than that on sand surface following the order: bentonite ? limestone > sand. On the addition of NaCl, adsorption on sand surface decreased to a minimum value and then increased. Adsorption increased with decreasing pH and also decreasing the content of Na 2‐acrylamido‐2‐methylpropanesulfonate in the copolymer. The amount of the copolymer adsorbed on the sand surface is comparable to that of partially hydrolyzed polyacrylamide but much less than that of poly(acrylamide‐co‐vinylpyrrolidone). The type of adsorption was found to be physical, which is supported by the enthalpy of adsorption as well as by IR spectra. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2482‐2490, 2004  相似文献   

2.
In the current study, poly(N‐vinylpyrrolidone‐co‐2‐acrylamido‐2‐methylpropanesulfonate sodium), poly(VP‐co‐AMPS), was prepared and used for the removal of Cu2+, Cd2+, and Ni2+ ions via a polymer‐enhanced ultrafiltration (PEUF) technique. The copolymer was synthesized by radical polymerization in an aqueous medium with a comonomer feed composition of 50:50 mol %. The molecular structure of the copolymer was elucidated by ATR‐FTIR and 1H NMR spectroscopy, and the average molecular weight was obtained by GPC. The copolymer composition was determined to be 0.42 for VP and 0.58 for AMPS by 1H NMR spectroscopy. The copolymer and homopolymers exhibited different retention properties for the metal ions. PAMPS exhibited a high retention capacity for all of the metal ions at both pH values studied. PVP exhibited selectivity for nickel ions. Poly(VP‐co‐AMPS) exhibited a lower retention capacity compared to PAMPS. However, for poly(VP‐co‐AMPS), selectivity for nickel ions was observed, and the retention of copper and cadmium ions increased compared to PVP. The homopolymer mixture containing PAMPS and PVP was inefficient for the retention of the studied metal ions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41272.  相似文献   

3.
The key objective of developing novel materials for hygienic living conditions is to lower the risk of transmitting diseases and biofouling. To this end, a number of silver–hydrogel nanocomposite systems are under development. In this study, we attempted a unique strategy to prepare silver‐nanoparticle‐loaded poly(acrylamide‐coN‐vinyl‐2‐pyrolidone) hydrogel composites. To load nanosilver particles into such a nonionic hydrogel, a novel breathing‐in/breathing‐out (BI–BO) approach was employed. As the number of BI–BO cycles increased, the amount of the silver nanoparticles loaded into these hydrogels also increased. This behavior was obvious and was confirmed by ultraviolet–visible spectroscopy and thermal analysis. Furthermore, the hydrogel–silver‐nanoparticle composites were confirmed with Fourier transform infrared spectroscopy and transmission electron microscopy studies. Antibacterial studies of these hydrogel–silver nanocomposites showed excellent results against Escherichia coli. The antibacterial activity increased with the number of BI–BO cycles, and samples that underwent three BI–BO cycles showed optimal bactericidal activity. The degree of crosslinking and the silver content had a great influence on the antibacterial efficacy. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Ultrafine well‐dispersed Fe3O4 magnetic nanoparticles were directly prepared in aqueous solution using controlled coprecipitation method. The synthesis of Fe3O4/poly (2‐acrylamido‐2‐methylpropane sulfonic acid) (PAMPS), Fe3O4/poly (acrylamide‐co‐2‐acrylamido‐2‐methylpropane sulfonic acid) poly(AM‐co‐AMPS) and Fe3O4/poly (acrylic acid‐co‐2‐acrylamido‐2‐methylpropane sulfonic acid) poly(AA‐co‐AMPS) ‐core/shell nanogels are reported. The nanogels were prepared via crosslinking copolymerization of 2‐acrylamido‐2‐methylpropane sulfonic acid, acrylamide and acrylic acid monomers in the presence of Fe3O4 nanoparticles, N,N′‐methylenebisacrylamide (MBA) as a crosslinker, N,N,N′,N′‐tetramethylethylenediamine (TEMED) and potassium peroxydisulfate (KPS) as redox initiator system. The results of FTIR and 1H‐NMR spectra indicated that the compositions of the prepared nanogels are consistent with the designed structure. X‐ray powder diffraction (XRD) and transmission electron microscope (TEM) measurements were used to determine the size of both magnetite and stabilized polymer coated magnetite nanoparticles. The data showed that the mean particle size of synthesized magnetite (Fe3O4) nanoparticles was about 10 nm. The diameter of the stabilized polymer coated Fe3O4 nanogels ranged from 50 to 250 nm based on polymer type. TEM micrographs proved that nanogels possess the spherical morphology before and after swelling. These nanogels exhibited pH‐induced phase transition due to protonation of AMPS copolymer chains. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Alkylation of N‐vinylpyrrolidone using lithium diisopropylamide and bis(2‐bromoethyl) ether was carried out to obtain 3‐(2‐(2‐bromoethoxy)ethyl)‐1‐vinyl‐2‐pyrrolidone ( 2 ). The derivative 2 represents a versatile starting molecule for further modification via nucleophilic displacement yielding, for example, the bicyclic 2‐vinyl‐8‐oxa‐2‐azaspiro[4.5]decan‐1‐one ( 4 ) or the ammonium salt 3‐diethoxy‐N,N′‐((dimethylbenzyl)ammonium bromide)‐1‐vinyl‐2‐pyrrolidone ( 10 ). Via free radical polymerization of 4 and 10 , the corresponding homopolymers were obtained. Copolymerization of 4 and 10 with N,N′‐diethylacrylamide yielded water‐soluble materials. The thermosensitive solubility of copolymers poly[(2‐vinyl‐8‐oxa‐2‐azaspiro[4.5]decan‐1‐one)‐co‐(N,N′‐diethylacrylamide)] and poly[(3‐diethoxy‐N,N′‐((dimethylbenzyl)ammonium bromide)‐1‐vinyl‐2‐pyrrolidone)‐co‐(N‐vinylpyrrolidone)] in water was investigated. © 2015 Society of Chemical Industry  相似文献   

6.
The rate of conversion of the monomers and crosslinker in the formation of a novel semi‐interpenetrating poly(ethylene glycol)/ poly(2‐acrylamido‐2‐methylpropane sulfonic acid‐coN‐isopropylacrylamide) copolymer hydrogel was determined by using 1H‐NMR spectrometry. It was established that poly(ethylene glycol) does not participate in the polymerization reactions and that crosslinking by methylenebisacrylamide occurs predominantly in the early stages of copolymer chain growth. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3635–3641, 2004  相似文献   

7.
A random copolymer of 2‐acrylamido‐2‐methylpropane sulfonic acid (AMPS) and N‐hydroxymethyl acrylamide (NHMA) was prepared by solution polymerization using ceric ammonium nitrate as an initiator. A grade of poly(AMPS)‐co‐poly(NHMA) (PAMPS‐co‐PNHMA) random copolymer was synthesized with AMPS and NHMA. The homopolymerization of AMPS and NHMA was also carried out by the same way as that of random copolymer. PAMPS‐co‐PNHMA and homopolymers of AMPS and NHMA were characterized by FTIR, rheology, FT‐NMR, scanning electron microscope, thermal analysis, and X‐ray diffaractometry. Cyclic voltammetry is used to explain the ion exchange properties of PAMPS‐co‐PNHMA and its possible application in the trace analysis. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
A pH‐ and temperature‐responsive semi‐interpenetrating copolymer PEG6000/poly(NIPA‐co‐AMPS) (PEG/AMPS‐co‐NIPA SIPN), for short PEG SIPN, was made by ammonium persulfate‐initiated suspension copolymerization of N‐isopropylacrylamide, 2‐acrylamido‐2‐methylpropanesulphonic acid, and N,N′‐methylene‐bis‐acrylamide (MBAA; crosslinker) in the presence of PEG6000. The PEG SIPN copolymer matrices containing nanostructures made in the high‐temperature copolymerization resulted in channels for PEG and facile migration of drugs. In drug encapsulation or drug‐loading process, one can easily ignore or pay less attention to the interaction between a drug and its encapsulation materials; however, the ignored interactions may induce problems in drug properties or the release behavior in use. Sodium diclofenac (DFNa) precipitates as the carboxylic acid form in an acidic environment, and it is challenging to encapsulate sodium diclofenac in such an acidic matrix without precipitation of the sparingly soluble acid form of DFNa on the surface of the polymer substrate. To avoid bulky precipitation in drug loading, an in situ loading technique was developed for producing gel spheres with DFNa uniformly distributed in the polymer matrix. The technique is based on fast polymerization of spherical droplets of a pregel solution in which the drug is dissolved. Diffusion‐loading prodrugs were made in comparison with in situ loading prodrugs in thermal, release kinetics, and release behavior. Drug release profiles (in pH 7.4 phosphate buffer) show that the new drug loading technique gives controlled release during a period of about 7 days at 37°C. By contrast, gel spheres loaded with sodium diclofenac using the conventional diffusion technique produced almost total release of the drug within about 24 h. The thermal stability of sodium diclofenac, the PEG/AMPS‐co‐NIPA SIPN, and the prodrugs made with the SIPN and sodium diclofenac was studied. A near zero‐order release kinetics was found in the in vitro release of sodium diclofenac with in situ loading PEG SIPN prodrug. We have, for the first time, studied sodium diclofenac release behavior from the PEG SIPN hydrogel systems. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Design of consistant and eco‐friendly methods for the synthesis of silver nanoparticles (AgNPs) is a significant forward direction in the field of application of antibacterial bionanotechnology. One among the available options is hydrogel templates, which are highly useful to achieve this goal. This investigation involves the development of poly(acrylamide)/poly(vinyl alcohol) hydrogel–silver nanocomposites (HSNCs) to achieve AgNPs of ~2–3 nm size in gel networks. The nanocomposite synthesis process is quite convenient, direct, and very fast, and the obtained hydrogel AgNP composites can be used for antibacterial and wound dressing applications. All the nanocomposite aqueous solutions have shown absorption peaks at 420 nm in UV–visible absorption spectrum corresponding to the Plasmon absorbance of AgNPs. X‐ray diffraction spectrum of the HSNC exhibited 2θ values matching with silver nanocrystals. Transmission electron microscopy images of nanocomposites represent discrete AgNPs throughout the gel networks in the range of 2–3 nm. The developed nanocomposites were evaluated for antibacterial application on E. coli. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Novel electrically conducting composite materials consisting of poly(pyrrole) (PPy) nanoparticles dispersed in a poly(vinyl alcohol)‐g‐poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid‐co‐acrylonitrile) hydrogels were prepared within the polymer matrix by in situ polymerization of pyrrole. The conversion yield of pyrrole into PPy particles was determined gravimetrically while structural confirmation of the synthesized polymer was sought by Fourier Transform Infrared (FTIR) and UV‐visible spectroscopy. The morphology of PPy nanoparticles containing hydrogel matrix was investigated by Scanning Electron Microscopy (SEM) analysis. Electrical conductivity of nanocomposite hydrogels of different compositions was determined by LCR meter while electroactive behavior of nanocomposite hydrogels swollen in electrolyte solutions was investigated by effective bend angle measurements. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

11.
Hydrogel/silver nanocomposites have shown immense potential in many biological applications. In this article, a facile method to synthesize poly(acrylamide‐co‐(β‐cyclodextrin))/silver nanocomposites is reported. The silver nanoparticles were in situ synthesized accompanying with the formation of poly(acrylamide‐co‐(β‐cyclodextrin)) hydrogel by gamma irradiation without additional reducing and stabilizing agents. In addition, the nanocomposites were prepared under ambient conditions. The formation of silver nanoparticles was confirmed by ultraviolet used to characterize the structure and composition of the synthetic nanocomposites. Transmission electron microscope verified the formation and homogeneous distribution of silver nanoparticles in the hydrogel matrix. The hybrid hydrogel exhibited excellent water‐swelling properties, which could be controlled by varying the mass ratio of acrylamide (AM) to β‐cyclodextrin (β‐CD) in the hydrogel. Furthermore, the poly(acrylamide‐co‐(β‐cyclodextrin))/silver nanocomposites were found to be effective in inhibiting the growth of both Gram‐negative Escherichia coli and Gram‐positive Staphylococcus aureus. POLYM. COMPOS., 37:1480–1487, 2016. © 2014 Society of Plastics Engineers  相似文献   

12.
《Polymer Composites》2017,38(4):708-718
In this study, we facilely introduce silver nanoparticles into Poly(N‐isopropylacrylamide‐co‐acrylic acid)(Poly(NIPAM‐co‐AA)) microgels and specially focus on the effect of hydrophilic acrylic acid segments on the responsive catalytic performance of silver nanoparticles. The obtained Poly(NIPAM‐co‐AA)/AgNPs composites are characterized by Fourier transform infrared spectra, X‐ray diffraction, X‐ray photoelectron spectroscopy, and transmission electron microscopy. The composites as catalysts are applied to the hydrogenation reaction of p‐nitrophenol and the related conditions such as reaction temperature, concentration of p‐nitrophenol, and the loadings of Ag nanoparticles are studied in detail. NIPAM segments of composites conveniently give silver nanoparticles a controllable characteristic for catalytic reaction by their conformation variation. AA segments of composites not only provide good stability and dispersibility for silver nanoparticles but also favor an easier diffusion of p‐nitrophenol to Ag NPs. POLYM. COMPOS., 38:708–718, 2017. © 2015 Society of Plastics Engineers  相似文献   

13.
The frictional coefficient of biological joint cartilage is extremely low. For this, many researchers are looking to develop materials that are similar to those in nature. We prepared a poly(sodium 2‐acrylamido‐2‐methylpropanesulfonate)/polyacrylamide double‐network hydrogel, and tested the friction of the hydrogel in poly(vinyl alcohol) (PVA) aqueous solution, which imitates a biological environment, against glass substrate. Results show that there is a transition sliding velocity in the friction test, which decreases with an increase in PVA solution concentration. At low sliding velocities, the frictional stress exhibits a minimum at a PVA concentration of 2c*, where c* is the overlap concentration. It is assumed that a separation layer of PVA has formed completely at this concentration, the thickness of which is calculated. In addition, the friction of the hydrogel is not sensitive to the normal pressure in PVA aqueous solution. © 2014 Society of Chemical Industry  相似文献   

14.
Poly(2‐acrylamido glycolic acid‐co‐2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) [P(AGA‐co‐APSA)] was synthesized by radical polymerization in an aqueous solution. The water‐soluble polymer, containing secondary amide, hydroxyl, carboxylic, and sulfonic acid groups, was investigated, in view of their metal‐ion‐binding properties, as a polychelatogen with the liquid‐phase polymer‐based retention technique under different experimental conditions. The investigated metal ions were Ag+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+, and Cr3+, and these were studied at pHs 3, 5, and 7. P(AGA‐co‐APSA) showed efficient retention of all metal ions at the pHs studied, with a minimum of 60% for Co(II) at pH 3 and a maximum close to 100% at pH 7 for all metal ions. The maximum retention capacity (n metal ion/n polymer) ranged from 0.22 for Cd2+ to 0.34 for Ag+. The antibacterial activity of Ag+, Cu2+, Zn2+, and Cd2+ polymer–metal complexes was studied, and P(AGA‐co‐APSA)–Cd2+ presented selective antibacterial activity for Staphylococcus aureus with a minimum inhibitory concentration of 2 μg/mL. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
In this article, thermosensitive poly(N‐isopropyl acrylamide‐co‐vinyl pyrrolidone)/chitosan [P(NIPAM‐co‐NVP)/CS] semi‐interpenetrating (semi‐IPN) hydrogels were prepared by redox‐polymerization using N,N‐methylenebisacrylamide as crosslinker and ammonium persulfate/N,N,N′,N′‐tetramethylethylenediamine as initiator. Highly stable and uniformly distributed Ag nanoparticles were prepared by using the semihydrogel networks as templates via in situ reduction of silver nitrate in the presence of sodium borohydride as a reducing agent. Introduction of CS improves the hydrogels swelling ratio (SR) and stabilizes the formed Ag nanoparticles in networks. Scanning electron microscopy and transmission electron microscopy revealed that Ag nanoparticles were well dispersed with diameters of 10 nm. The semi‐IPN hydrogel/Ag composites had higher SR and thermal stability than its corresponding semi‐IPN hydrogels. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Hydrogel silver nanocomposites are found to be excellent materials for antibacterial applications. To enhance their applicability novel hydrogel‐silver nanoparticle‐curcumin composites have been developed. For developing, these composites, the hydrogel matrices are synthesized first by polymerizing acrylamide in the presence of poly(vinyl sulfonic acid sodium salt) and a trifunctional crosslinker (2,4,6‐triallyloxy 1,3,5‐triazine, TA) using redox initiating system (ammonium persulphate/TMEDA). Silver nanoparticles are generated throughout the hydrogel networks using in situ method by incorporating the silver ions and subsequent reduction with sodium borohydride. Curcumin loading into hydrogel‐silver nanoparticles composite is achieved by diffusion mechanism. A series of hydrogel‐silver nanoparticle‐curcumin composites are developed and are characterized by using Fourier transform infrared (FTIR) and UV–visible (UV–vis) spectroscopy, X‐ray diffraction, thermal analyses, as well as scanning and transmission electron microscopic (SEM/TEM) methods. An interesting arrangement of silver nanoparticles i.e., a shining sun shape (ball) (~ 5 nm) with apparent smaller grown nanoparticles (~ 1 nm) is observed by TEM. The curcumin loading and release characteristics are performed for various hydrogel composite systems. A comparative antimicrobial study is performed for hydrogel‐silver nanocomposites and hydrogel‐silver nanoparticle‐curcumin composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid), poly(methacrylic acid), and five copolymers of poly[(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid)‐co‐(methacrylic acid)] were synthesized by radical polymerization and obtained in yields >97%. The polymers were characterized by FT‐IR, [1H]NMR, and [13C]NMR and studied by means of the Liquid‐phase Polymer‐based Retention (LPR) technique. The metal ion retention ability of the copolymers for Cu(II), Cd(II), Co(II), Hg(II), Ni(II), Zn(II), Cr(III) and Ag(I) was investigated at different pH values because of their environmental and analytical interest. The retention profiles of the copolymers were compared with those of the corresponding homopolymers and retention of metal ions was found to increase with increasing pH. © 2001 Society of Chemical Industry  相似文献   

18.
Poly(acrylamide‐co‐2‐acrylamido‐2‐methylpropane sulfonic acid) hydrogels were synthesized using gamma‐radiation‐initiated polymerization. The progress of copolymerization and crosslinking was observed by viscosity measurement on reaction mixtures subjected to varying radiation doses. The copolymer gels were characterized by differential scanning calorimetry, X‐ray diffraction, scanning electron microscopy, infrared spectroscopy, and elemental analysis. The swelling behavior and other properties of the gels were found to be very similar to those of poly(acrylamide‐co‐2‐acrylamido‐2‐methylpropane sulfonic acid) hydrogels synthesized using conventional free‐radical initiation in the presence of crosslinkers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1322–1330, 2003  相似文献   

19.
A new superabsorbent copolymer, poly(sodium acrylate‐co‐sodium 1‐(acryloyloxy) propan‐2‐yl phosphate) [P(SA‐co‐SAPP)], was synthesized by a novel prepared monomer, 1‐(acryloyloxy) propan‐2‐yl phosphoryl dichloride. The swelling properties of the superabsorbent were investigated by comparison with poly(sodium acrylate) (PSA) and the copolymer of poly(sodium acrylate‐co‐2‐hydroxypropyl acrylate) [P(SA‐co‐HPA)]. The results showed that (1) the superabsorbent containing sodium 1‐(acryloyloxy) propan‐2‐yl phosphate had higher water absorbency at general testing conditions; (2) the swelling properties of P(SA‐co‐SAPP) and PSA were obviously influenced by pH of solutions, which were different from that of P(SA‐co‐HPA); (3) the swelling process and the saturated water absorbency of all superabsorbents were remarkably affected by cations, especially multivalent ones, while barely affected by anions. POLYM. ENG. SCI., 47:728–737, 2007. © 2007 Society of Plastics Engineers.  相似文献   

20.
Superabsorbent polymer composites (SAPCs) are very promising and versatile materials for biomedical applications. This study concentrates on the development of novel cellulose‐based SAPC, Poly(acrylic acid‐co‐acrylamide‐co?2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid)‐grafted nanocellulose/poly(vinyl alcohol) composite, P(AA‐co‐AAm‐co‐AMPS)‐g‐NC/PVA, as a potential drug delivery vehicle. Amoxicillin was selected as a model drug, which is used for the treatment of Helicobacter pylori induced peptic and duodenal ulcers. P(AA‐co‐AAm‐co‐AMPS)‐g‐NC/PVA was synthesized by graft copolymerization reaction, and FTIR, XRD, SEM, and DLS analyses were performed for its characterization. Equilibrium swelling studies were conducted to evaluate the stimuli‐response behavior of the SAPC and found that equilibrium swelling was dependent on pH, contact time, temperature, ionic strength, concentration of crosslinker and PVA. Maximum drug encapsulation efficiency was found out by using different concentrations of amoxicillin. Drug release studies were carried out at simulated gastric and intestinal fluids and the release % was observed as maximum in intestinal fluids within 4 h. The drug release kinetics was investigated using Peppas' potential equation and follows non‐Fickian mechanism at pH 7.4. Thus, the drug release experiments indicate that P(AA‐co‐AAm‐co‐AMPS)‐g‐NC/PVA would be a fascinating vehicle for the in vitro administration of amoxicillin into the gastrointestinal tract. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40699.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号