首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The environmentally friendly esterification of acetosolv lignin (AL), obtained from pressed oil palm mesocarp fibers, is described, for the improvement of thermo‐oxidative properties of poly(methyl methacrylate) (PMMA) films. Acetylation of AL was performed in ecofriendly conditions using acetic anhydride in the absence of catalysts. Acetylated acetosolv lignin (AAL) was successfully obtained in only 12 min with a solvent‐free and catalyst‐free microwave‐assisted procedure. Lignins were characterized by Fourier transform infrared spectroscopy, size exclusion chromatography, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC), confirming the efficacy of the methodology employed. AL and AAL as fillers in different concentrations (1% and 5%) were added to PMMA films. The thermal and mechanical properties of the lignin‐incorporated films were analyzed by TGA, DSC, and dynamic mechanical analysis (DMA). The films incorporated with lignin and acetylated lignin presented initial degradation temperature (Tonset) and onset oxidative temperature (OOT) values higher than pure PMMA films, contributing thus to an enhancement of thermo‐oxidative stability of PMMA. The DMA analyses showed that incorporation of AL or AAL increased the storage modulus (E′) of PMMA films, but did not affect their glass‐transition temperatures (Tg). The results indicate the potential use of oil palm mesocarp lignin to enhance the thermo‐oxidative properties of PMMA without compromising its mechanical response. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45498.  相似文献   

2.
Lignin based thermal‐responsive elastomers were produced by a melt polycondensation reaction with a long alkyl chain hyperbranched poly(ester‐amine‐amide) (B3‐A2‐CB31). The effect of lignin content on elastomers properties was investigated. The thermal and mechanical properties of the copolymers were characterized by DMA, DSC, and TGA. The morphology of the copolymer was examined by SEM. Tensile properties were dominated by HBP <25% lignin content while lignin dominated >25% content. The copolymers glass transition temperature (Tg) increased with lignin content. The elastomer with 30% lignin content demonstrated optimal mechanical properties (tensile strength 5.3 MPa, Young's modulus 8.9 MPa, strain at break 301%, and toughness 1.03 GPa). Thermally stimulated dual shape memory effects (SME) of the copolymers were quantified by cyclic thermomechanical tests. The transition temperature (Ttrans) of the polymer was able to be controlled (room to body temperature) by varying the amount of lignin added which broadens the range to medical applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41103.  相似文献   

3.
Lignin‐based thermal responsive dual shape memory copolymeric elastomers were prepared with a highly branched prepolymer (HBP, A2B3 type) via a simple one‐pot bulk polycondensation reaction. The effect of fractionated lignin type (with good miscibility in the HBP) on copolymer properties was investigated. The thermal and mechanical properties of the copolymers were characterized by DMA, DSC, and TGA. Tensile properties were dominated by HBP <45% lignin content while lignin dominated >45% content. The copolymers glass transition temperature (Tg) increased with lignin content and lignin type did not play a significant role. Thermally stimulated dual shape memory effects (SME) of the copolymers were quantified by cyclic thermomechanical tests. All copolymers had shape fixity rate >95% and >90% shape recovery for all compositions. The copolymer shape memory transition temperature (Ttrans) increased with lignin content and Ttrans was 20°C higher than Tg. Lignin, a renewable resource, can be used as a netpoint segment in polymer systems with SME behavior. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41389.  相似文献   

4.
A new bismaleimide monomer, 2‐((4‐maleimidophenoxy)methyl)‐5‐(4‐maleimidophenyl)‐1,3,4‐oxadiazole (Mioxd), was designed and synthesized. The chemical structure of the monomer was confirmed by means of Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H NMR) spectroscopy and elemental analysis, and its thermal properties were characterized using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Mioxd as a reactive modifier was blended with epoxy resin based on bisphenol A diglycidyl ether (DGEBA) in weight ratio of 5, 10, and 15%, using 4,4′‐diaminodiphenyl sulfone (DDS) as hardener. The effect of Mioxd addition on the cure behavior and thermal properties of the blend resins was studied by DSC, TGA, and dynamic mechanical analysis (DMA). DSC investigations showed that the main exothermic peak temperature (Tp) of the blend systems did not obviously shift with increasing Mioxd content whereas a new shoulder appeared and gradually grew on the high temperature side of the exothermic peak. The results of DMA measurements exhibited the glassy storage modulus (G') and glass transition temperatures (Tg) increased as the Mioxd content was increased, the cured blends investigated were miscible and no phase separation occurred. Further, the thermal decomposition temperature first decreased and then increased, but the char yield at 600°C increased with an increase in Mioxd content. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

5.
The mechanical and thermal properties of glass bead–filled nylon‐6 were studied by dynamic mechanical analysis (DMA), tensile testing, Izod impact, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) tests. DMA results showed that the incorporation of glass beads could lead to a substantial increase of the glass‐transition temperature (Tg) of the blend, indicating that there existed strong interaction between glass beads and the nylon‐6 matrix. Results of further calculation revealed that the average interaction between glass beads and the nylon‐6 matrix deceased with increasing glass bead content as a result of the coalescence of glass beads. This conclusion was supported by SEM observations. Impact testing revealed that the notch Izod impact strength of nylon‐6/glass bead blends substantially decreased with increasing glass bead content. Moreover, static tensile measurements implied that the Young's modulus of the nylon‐6/glass bead blends increased considerably, whereas the tensile strength clearly decreased with increasing glass bead content. Finally, TGA and DSC measurements indicated that the thermal stability of the blend was obviously improved by incorporation of glass beads, whereas the melting behavior of the nylon‐6 remained relatively unchanged with increasing glass bead content. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1885–1890, 2004  相似文献   

6.
Natural rubber grafted with poly(dimethyl(methacryloyloxymethyl)phosphonate) (i.e., NR‐g‐PDMMMP) was prepared in latex medium via photopolymerization. Thermal and flame resistance properties of the NR‐g‐PDMMMP prepared with various levels of grafted PDMMMP or grafting rate (GR) were investigated. Thermal behaviors were investigated by thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). It was found that the graft copolymer exhibited phase separation with double Tg values. A shift of Tgs toward each other was observed with increasing GR, which indicated tendency to become a single phase material. Increasing GRs also caused increasing heat and flame resistance with increasing degradation temperature and level of char residue. Furthermore, increasing level of limited oxygen index (LOI) and decreasing burning rate were observed with increasing the GR. This is attributed to increasing content of char residue of the phosphorus compound, which acted as the thermal insulation and a barrier of oxygen to transfer to the burning materials. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
Poly(N‐isopropylacrylamide) (PNIPAAm)/poly(ethylene oxide) (PEO) semi‐interpenetrating polymer networks (semi‐IPNs) synthesized by radical polymerization of N‐isopropylacrylamide (NIPAAm) in the presence of PEO. The thermal characterizations of the semi‐IPNs were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dielectric analysis (DEA). The melting temperature (Tm) of semi‐IPNs appeared at around 60°C using DSC. DEA was employed to ascertain the glass transition temperature (Tg) and determine the activation energy (Ea) of semi‐IPNs. From the results of DEA, semi‐IPNs exhibited one Tg indicating the presence of phase separation in the semi‐IPN, and Tgs of semi‐IPNs were observed with increasing PNIPAAm content. The thermal decomposition of semi‐IPNa was investigated using TGA and appeared at around 370°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3922–3927, 2003  相似文献   

8.
Single‐walled carbon nanotubes (SWCNTs) dispersed in N‐methylpyrrolidone (NMP) were functionalized by addition of polystyryl radicals from 2,2,6,6‐tetramethyl‐1‐piperidinyloxy‐ended polystyrene (SWCNT‐g‐PS). The amount of polystyrene grafted to the nanotubes was in the range 20‐25 wt% irrespective of polystyrene number‐average molecular weight ranging from 2270 to 49 500 g mol?1. In Raman spectra the ratios of D‐band to G‐band intensity were similar for all of the polystyrene‐grafted samples and for the starting SWCNTs. Numerous near‐infrared electronic transitions of the SWCNTs were retained after polymer grafting. Transmission electron microscopy images showed bundles of SWCNT‐g‐PS of various diameters with some of the polystyrene clumped on the bundle surfaces. Composites of SWCNT‐g‐PS in a commercial‐grade polystyrene were prepared by precipitation of mixtures of the components from NMP into water, i.e. the coagulation method of preparation. Electrical conductivities of the composites were about 10?15 S cm?1 and showed no percolation threshold with increasing SWCNT content. The glass transition temperature (Tg) of the composites increased at low filler loadings and remained constant with further nanotube addition irrespective of the length and number of grafted polystyrene chains. The change of heat capacity (ΔCp) at Tg decreased with increasing amount of SWCNT‐g‐PS of 2850 g mol?1, but ΔCp changed very little with the amount of SWCNT‐g‐PS of higher molecular weight. The expected monotonic decrease in ΔCp coupled with the plateau behavior of Tg suggests there is a limit to the amount that Tg of the matrix polymer can increase with increasing amount of nanotube filler. Copyright © 2012 Society of Chemical Industry  相似文献   

9.
In this study, polymer hybrid composites were synthesized by sol‐gel process. 3‐Amino‐propyltrimethoxysilane [APTMS)/γ‐Glycidoxypropyl trimethoxy‐silane (GPTMS); (4, 4′‐Methylene‐dianiline (DDM)] and 1,4‐Bis(trimethoxysilylethyl) benzene (BTB) were added to DGEBA type epoxy resin for anticipated to exhibit excellent thermal stability. Boron trifluoride monoethylamine (BF3MEA) was used as catalyst. The structure of nanocomposites was characterized by attenuated total reflectance (ATR) and solid‐state 29Si NMR which suggest EP‐APTMS‐BTB/EP‐GPTMS‐BTB possesses T3; T1–T0, and T1 structures when the BTB content was lower than 10 wt % and higher 20 wt %, respectively. BF3MEA was proved to be an effective catalyst for the sol‐gel reaction of APTMS, but it could not promote for GPTMS. From TEM microphotographs, EP‐APTMS‐BTB (10 wt %) possesses a dense inorganic structure (particle size around 5–15 nm) compare with the loose inorganic structure of EP‐GPTM‐/BTB (10 wt %). DSC, TGA were use to analyze the thermal properties of the nanocomposites and DMA was used to analyze the dynamic mechanical properties of hybrid composites. The Tgs of all nanocomposites decreased with the increasing BTB content. A system with BTB content lower than 10 wt % showed good dynamic mechanical property and thermal stability (Td5 increased from 336°C to 371°C, char yield increased from 27.4 to 30.2%). The structure of inorganic network affects the Td5 and dynamic mechanical properties of composite. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40984.  相似文献   

10.
A novel chiral azobenzene polyurethane (CAPU) was prepared from chromophore, chiral reagent L (?)‐tartaric acid and toluene diisocyanate (TDI). The chemical structure and the thermal property were characterized by UV‐Vis spectrum, FT‐IR, 1H NMR, circular dichroism (CD) spectrum, differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). DSC and TGA experiments showed that the glass transition temperature (Tg) and the decomposition temperature (Td) at 5% mass loss were 110°C and 199°C, respectively. The refractive index (n) and thermo‐optic coefficient (dn/dT) of the CAPU were measured at 650 nm wavelength and different temperature by attenuated total reflection (ATR) technique. By using CCD digital imaging devices, transmission loss of CAPU was measured and the value is 0.565dB/cm. The results will provide the foundation for many potential applications such as digital thermo‐optic switch materials and other fields in the future. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Epoxy‐based nanocomposites with 2, 5, and 7 wt% of montmorillonite (MMT) nanoclay were prepared using high shear melt mixing technique. The microstructural features of the nanocomposites were investigated by transmission electron microscopy (TEM). The thermal and mechanical properties were measured using differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA), and dynamic mechanical analyzer (DMA). Further, the effect of voltage, temperature, seawater aging on the electrical conductivity (σDC) of the nanocomposites was also measured. To understand the free volume behavior upon filler loading, and to observe the connectivity between microstructure and other properties, positron annihilation lifetime spectroscopy was used. The TEM results revealed that MMT nanoparticles were uniformly dispersed in the epoxy matrix. Experimental results showed that the inclusion of 2 wt% MMT nanofiller increased the Tg, electrical conductivity, thermal stability, modulus, free volume of the epoxy nanocomposite significantly. This is well explained from the results of Tg (DSC and DMA), thermal stability, TGA residue, free volume analysis, and electrical conductivity. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

12.
This study has shown that ultrafiltration allows the selective extraction from industrial black liquors of lignin fraction with specific thermo‐mechanical properties, which can be matched to the intended end uses. Ultrafiltration resulted in the efficient fractionation of kraft lignin according to its molecular weight, with an accumulation of sulfur‐containing compounds in the low‐molecular weight fractions. The obtained lignin samples had a varying quantities of functional groups, which correlated with their molecular weight with decreased molecular size, the lignin fractions had a higher amount of phenolic hydroxyl groups and fewer aliphatic hydroxyl groups. Depending on the molecular weight, glass‐transition temperatures (Tg) between 70 and 170°C were obtained for lignin samples isolated from the same batch of black liquor, a tendency confirmed by two independent methods, DSC, and dynamic rheology (DMA). The Fox–Flory equation adequately described the relationship between the number average molecular masses (Mn) and Tg's‐irrespective of the method applied. DMA showed that low‐molecular‐weight lignin exhibits a good flow behavior as well as high‐temperature crosslinking capability. Unfractionated and high molecular weight lignin (Mw >5 kDa), on the other hand, do not soften sufficiently and may require additional modifications for use in thermal processings where melt‐flow is required as the first step. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40799.  相似文献   

13.
A novel acetylene‐ and maleimide‐terminated benzoxazine, 3‐(3‐ethynylphenyl)‐3,4‐dihydro‐2H‐6‐(N‐maleimido)‐1,3‐benzoxazine (MBZ‐apa), was successfully synthesized with N‐(4‐hydroxyphenyl)maleimide, paraformaldehyde, and 3‐aminophenylacetylene. The structure of the benzoxazine is confirmed by FTIR and 1H‐NMR spectroscopies. MBZ‐apa is easily dissolved in common organic solvents. Differential scanning calorimetry (DSC) was used to study thermal cross‐linking behavior of MBZ‐apa. The DSC curve shows only a single exothermic peak due to the oxazine ring‐opening polymerization and the polymerization of the acetylene and maleimide groups occurring simultaneously in the same temperature range. Dynamic mechanical analyses (DMA) reveals that the novel polybenzoxazine exhibits high glass‐transition temperature (Tg) (ca. 348°C). The storage modulus arrives at 4.5 GPa in the range of room temperature to 330°C. The polybenzoxazine exhibits good thermal stability as evidenced by thermogravimetric analysis (TGA). Pyrolysis‐gas chromatography/mass spectrometry (Pyrolysis‐GC/MS) was employed to characterize the polybenzoxazine. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
A series of intercrosslinked networks formed by diglycidyl ether of bisphenol A epoxy resin (DGEBA) and novel bismaleimide containing phthalide cardo structure (BMIPP), with 4,4′‐diamino diphenyl sulfone (DDS) as hardener, have been investigated in detail. The curing behavior, thermal, mechanical and physical properties and compatibility of the blends were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), notched Izod impact test, scanning electron microscopy (SEM) and water absorption test. DSC investigations showed that the exothermic transition temperature (Tp) of the blend systems shifted slightly to the higher temperature with increasing BMIPP content and there appeared a shoulder on the high‐temperature side of the exothermic peak when BMIPP content was above 15 wt %. TGA and DMA results indicated that the introduction of BMIPP into epoxy resin improved the thermal stability and the storage modulus (G′) in the glassy region while glass transition temperature (Tg) decreased. Compared with the unmodified epoxy resin, there was a moderate increase in the fracture toughness for modified resins and the blend containing 5 wt % of BMIPP had the maximum of impact strength. SEM suggested the formation of homogeneous networks and rougher fracture surface with an increase in BMIPP content. In addition, the equilibrium water uptake of the modified resins was reduced as BMIPP content increased. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Two oxetane‐derived monomers 3‐(2‐cyanoethoxy)methyl‐ and 3‐(methoxy(triethylenoxy)) methyl‐3′‐methyloxetane were prepared from the reaction of 3‐methyl‐3′‐hydroxymethyloxetane with acrylonitrile and triethylene glycol monomethyl ether, respectively. Their homo‐ and copolyethers were synthesized with BF3· Et2O/1,4‐butanediol and trifluoromethane sulfonic acid as initiator through cationic ring‐opening polymerization. The structure of the polymers was characterized by FTIR and1H NMR. The ratio of two repeating units incorporated into the copolymers is well consistent with the feed ratio. Regarding glass transition temperature (Tg), the DSC data imply that the resulting copolymers have a lower Tg than pure poly(ethylene oxide). Moreover, the TGA measurements reveal that they possess in general a high heat decomposition temperature. The ion conductivity of a sample (P‐AN 20) is 1.07 × 10?5 S cm?1 at room temperature and 2.79 × 10?4 S cm?1 at 80 °C, thus presenting the potential to meet the practical requirement of lithium ion batteries for polymer electrolytes. Copyright © 2005 Society of Chemical Industry  相似文献   

16.
Binary copolymerization of 4‐methyl‐1,3‐pentadiene (4MPD) with styrene, butadiene and isoprene promoted by the titanium complex dichloro{1,4‐dithiabutanediyl‐2,2′‐bis[4,6‐bis(2‐phenyl‐2‐propyl)phenoxy]}titanium activated by methylaluminoxane is reported. All the copolymers are obtained in a wide range of composition and the molecular weight distributions obtained from gel permeation chromatographic analysis of the copolymers are coherent with the materials being copolymeric in nature. The copolymer microstructure was fully elucidated by means of 1H NMR and 13C NMR spectroscopy. Differential scanning calorimetry shows an increase of glass transition temperature (Tg) with the amount of 4MPD in the copolymers with butadiene and isoprene, while in the copolymers with styrene Tg is increased on increasing the amount of styrene. © 2016 Society of Chemical Industry  相似文献   

17.
Interpenetrating polymer networks (IPNs) composed of poly(vinyl alcohol) (PVA) and poly(N‐isopropylacrylamide) (PNIPAAm) were prepared by the sequential‐IPN method. The thermal characterization of the IPNs was investigated using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dielectric analysis (DEA). Depression of the melting temperature (Tm) of the PVA segment in IPNs was observed with increasing PNIPAAm content using DSC. DEA was employed to ascertain the glass‐transition temperature (Tg) of IPNs. From the result of DEA, IPNs exhibited two Tg values, indicating the presence of phase separation in the IPNs. The thermal decomposition of IPNs was investigated using TGA and appeared at near 200°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 881–885, 2003  相似文献   

18.
A novel phosphorus‐containing epoxy resin (EPN‐D) was prepared by addition reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide (DOPO) and epoxy phenol‐ formaldehyde novolac resin (EPN). The reaction was monitored by epoxide equivalent weight (EEW) titration, and its structure was confirmed by FTIR and NMR spectra. Halogen‐free epoxy resins containing EPN‐D resin and a nitrogen‐containing epoxy resin (XT resin) were cured with dicyandiamide (DICY) to give new halogen‐free epoxy thermosets. Thermal properties of these thermosets were studied by differential scanning calorimeter (DSC), dynamic mechanical analysis (DMA), thermal mechanical analyzer (TMA) and thermal‐gravimetric analysis (TGA). They exhibited very high glass transition temperatures (Tgs, 139–175°C from DSC, 138–155°C from TMA and 159–193°C from DMA), high thermal stability with Td,5 wt % over 300°C when the weight ratio of XT/EPN‐D is ≥1. The flame‐retardancy of these thermosets was evaluated by limiting oxygen index (LOI) and UL‐94 vertical test. The thermosets containing isocyanurate and DOPO moieties showed high LOI (32.7–43.7) and could achieve UL‐94 V‐0/V‐1 grade. Isocyanurate and DOPO moieties had an obvious synergistic effect on the improvement of the flame retardancy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
Polymer blends based on various ratios of polystyrene (PS) and polymethyl methacrylate (PMMA) were exposed to different doses of gamma radiation up to 25 Mrad. The structure–property behavior of the polymer blends before and after they had been irradiated was investigated by DSC, TGA, and FTIR spectroscopy. The DSC scans of the glass transition temperature (Tg) of the different polymer blends showed that the Tg was greatly decreased by increasing the ratio of the PMMA component in the polymer blends. Moreover, the Tg of PS/PMMA blends was found to decrease with increasing irradiation dose. The depression in Tg was noticeable in the case of blends rich in PMMA component. The TGA thermograms showed that the thermal stability of the unirradiated polymer blends decreases with increasing the ratios of PMMA component. Also, it was found that the presence of PS polymer in the blends affords protection against gamma radiation degradation and improves their thermal stability. However, exposing the polymer blends to high doses of gamma radiation caused oxidative degradation to PMMA components and decreased the thermal stability. The investigation of the kinetic parameters of the thermal decomposition reaction confirm the results of thermal stability. The FTIR analysis of the gamma‐irradiated polymer blend films gives further support to the TGA data. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 509–520, 1999  相似文献   

20.
Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) was irradiated by 60Co γ‐rays (doses of 50, 100 and 200 kGy) under vacuum. The thermal analysis of control and irradiated PHBV, under vacuum was carried out by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The tensile properties of control and irradiated PHBV were examined by using an Instron tensile testing machine. In the thermal degradation of control and irradiated PHBV, a one‐step weight loss was observed. The derivative thermogravimetric curves of control and irradiated PHBV confirmed only one weight‐loss step change. The onset degradation temperature (To) and the temperature of maximum weight‐loss rate (Tp) of control and irradiated PHBV were in line with the heating rate (°C min?1). To and TP of PHBV decreased with increasing radiation dose at the same heating rate. The DSC results showed that 60Co γ‐radiation significantly affected the thermal properties of PHBV. With increasing radiation dose, the melting temperature (Tm) of PHBV shifted to a lower value, due to the decrease in crystal size. The tensile strength and fracture strain of the irradiated PHBV decreased, hence indicating an increased brittleness. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号