首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Silver nanoparticles doped in polyvinyl alcohol (AgNps/PVA) were synthesized via polymer-promoted reductive reaction of AgNO3 and PVA under time-dependent exposure to UV radiation. The AgNps/PVA composites were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction, UV–Vis spectroscopy, and transmission electron microscopy to describe the structure, nuclearity, and distribution of Ag Nps within the PVA matrix. The UV–Vis spectrum of AgNps/PVA exhibited a broad surface plasmon absorption around 425–443 nm which originated from the formation of Ag NPs. Surface analysis by XPS indicated that the Ag NPs were grown solely on the PVA surface at UV exposure time of 2 h (2.0AgNPs/PVA). Increasing the UV exposure time to 4 h will cause the transformation of metallic nanosilver to oxidized nanosilver. UV–Vis absorption spectra were in situ recorded to follow the synthesis of Prussian blue (PB) on 2.0AgNPs/PVA (PB@2.0AgNPs/PVA). The colloidal dispersion of 2.0AgNPs/PVA in an acidic medium containing free Fe(III) ions and potassium hexacyanoferrate(III) revealed an additional band centered at 720 nm due to the intermetal charge-transfer absorbance of the polymeric Fe(II)-C-N-Fe(III) of the PB@2.0AgNPs/PVA nanocomposite. Control experiments were shown to involve a spontaneous electron transfer reaction between 2.0AgNPs/PVA and Fe(III) ions, with a concomitant decomposition of hexacyanoferrate(III) and formation of PB was observed. Moreover, IR gave clear cut evidence for the synthesis of PB@2.0AgNPs/PVA from the appearance of a band for the cyano group at 2090 cm?1.  相似文献   

2.
The objective of this paper is investigating the effect of different localizations of titanium dioxide (TiO2) and hexagonal boron nitride (hBN) nanoparticles in the poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blends on the ultraviolet (UV) blocking, infrared reflection (NIR), and thermal conductivity of the nanocomposites for the fabrication of bionanocomposites with high performance. Transmission electron microscopy images demonstrated that the different mixing sequences induced different nanoparticle localization in the immiscible PCL/PLA blend. These different localizations yielded differences in the properties of the hybrid quaternary nanocomposite. When the nanoparticles had different localizations, TiO2 at the interface and hBN in the PCL phase, the thermal conductivity was 0.86 Wm−1 K−1, 100% of UV radiation (λ = 300 nm) was blocked and 74% of NIR radiation was reflected. This nanocomposite has a strong potential for application as a multifunctional biodegradable film for agriculture, capable of absorbing UV radiation, reflecting NIR radiation, and conducting thermal energy.  相似文献   

3.
Zinc zirconate nanopowder (ZZN) photocatalyst was prepared by sol–gel method using zinc acetate and zirconium acetylacetonate as precursors. The optimal calcination temperature was 800 °C and ZnZrO3 phase was formed. The structural and morphology properties of the nanocomposite were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDAX) and ultraviolet visible diffuse reflectance (UV-DRS). The SEM observation for ZZN showed the average grain size of 26 nm. UV–vis diffuse reflectance spectra (DRS) of the nanocomposite showed an absorption edge at 355 nm. The catalytic activity of ZZN was investigated by degradation of Tertrodirect Light Blue (TLB) dye in water using UV–vis spectroscopy (UV–vis) with an initial concentration of 20 mg/L dye. The influence of the catalyst concentration, time of irradiation and pH on photodegradation of dye was investigated. The results showed that degradation of TLB dye can be conducted in the photocatalytic process. Accordingly, a degradation of more than 97% of dye was achieved by applying the optimal operational parameters with 30 mg/L of catalyst, pH 9 at 1 h irradiation.  相似文献   

4.
Photoactivity of poly(lactic acid) (PLA) nanocomposites is of great interest for rational design of products for either short‐term/single‐use or long‐term/durable applications. We prepared PLA/TiO2 nanocomposite films through a solution mixing/film casting method. Results showed that photodegradability/photostability of PLA could be well modulated by selecting appropriate TiO2 nanofillers. TiO2 nanoparticles and nanowires were characterized using X‐ray diffraction, UV–Vis–NIR spectrophotometer, and scanning electron microscopy. Changes in color, weight, structure, thermal stability, and phase transitions of PLA and nanocomposite films before and after UV irradiation were evaluated to study photoactivity characteristics. Pure PLA exhibited moderate photodegradability, but the photodegradability and photostability of PLA nanocomposites (PNA) were significantly enhanced by NanoActive (NA) TiO2 nanoparticles and A type TiO2 nanowires, respectively. Pure PLA had a weight loss of 27% after 38 days of UV irradiation. The weight loss of photodegradable (PD) PNA (PNA = PLA with 1% NA TiO2) reached 38%, whereas that of photostable (PS) nanocomposites (P3AW) (P3AW = PLA with 3% A type TiO2 nanowire) was only 5%. PD PLA exhibited characteristic peaks of carboxylic acid OH stretching and C?C double bond after UV irradiation in Fourier‐transform infrared spectra, whereas spectra of PS PLA remained almost the same. Thermal decomposition temperatures, glass transition temperatures, and melting temperatures of PD PLAs decreased dramatically after UV irradiation, but no obvious changes were observed for those of PS PLAs. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40241.  相似文献   

5.
Quantitative analysis of isothermal crystallization kinetics of PLA/clay nanocomposite and PLA/clay/regenerated cellulose fiber (RCF) hybrid composite has been conducted. The crystallization rate constant (k) according to Avrami equation was higher in PLA/clay nanocomposite than in PLA/clay/RCF hybrid composite at the same crystallization temperature. The equilibrium melting temperature obtained by Hoffman–Weeks equation was almost same in both composites, whereas stability parameter was greater in hybrid composite than in nanocomposite. Activation energy of hybrid composite for crystallization was larger than that of nanocomposite. The value of nucleation parameter (Kg) and surface free energy (se) of hybrid composite were larger than nanocomposite, indicating that hybrid composite has a less folding regularity than nanocomposite. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Nonisothermal crystallization kinetics and properties of poly(vinyl alcohol)/octasilane polyhedral oligomeric silsesquioxanes nanocomposite were investigated by differential scanning calorimetry and compared with pure poly(vinyl alcohol). The effects of octasilane polyhedral oligomeric silsesquioxanes content and cooling rate on the degree of crystallinity (Xc), crystallization half time (t1/2), Ozawa exponent (m), and Mo kinetics parameters were studied. The role of thermal treatment on the morphology and structure of the samples was studied by X-ray diffraction and scanning electron microscopy analyses. UV–visible analysis was used to show the polyhedral oligomeric silsesquioxanes effect on the nanocomposite structure. Electrochemical impedance spectroscopy analysis demonstrated that the best conductivity was for the nanocomposite with 1 wt% of octasilane polyhedral oligomeric silsesquioxanes.  相似文献   

7.
Nano-silver/poly(2-acrylamido-2-methylpropanesulfonic acid (AMPS)-methyl methacrylate (MMA)) [P(AMPS-co-MMA)]composite materials were prepared with the silver nitrate solution containing AMPS and MMA monomers without initiator or reducer, in which Ag+ ion was reduced to nanosilver particles and the monomers were copolymerized by ultrasonic simultaneously. The microstructure of the nanocomposite materials was characterized by means of the transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), UV-Vis and fluorescence spectrometer. The nanosilver particles were homogeneously dispersed in polymer matrix and the size of particles is in the range of 5~15 nm, the size and distribution of nano silver particles had something to do with ultrasonic time. Spectrum of FT-IR, UV-Vis and fluorescence were indicated that there is chemical action between namo-Ag and special group attached to the copolymer. X-ray photoelectron spectroscopy (XPS) was proved that the interaction between nano silver and the functional group attached to copolymer is of coordination. It is concluded that there is a kind of interaction phenomena of nanometal silver with effective polymer matrix in the nanocomposite materials.  相似文献   

8.
《Ceramics International》2017,43(14):10654-10660
In this work, the effect of a new nanocomposite material on the photodegradation of methylene blue is demonstrated. The nanocomposite is synthesized by the combination of cupric oxide (CuO) with graphene nanoplatelets (GNPs) and characterized by XRD, FE-SEM, FTIR, Raman, and UV–vis spectroscopy. Interestingly, the inclusion of GNPs with CuO enhances the photocatalytic properties of nanocomposite without tweaking inherent properties such as the conductive nature of GNPs. Within 80 min of exposure to the solar light, a 99.44% photodegradation of methylene blue is achieved, which is much better than using CuO alone, for which the degradation is only 75%. The much-improved photocatalytic performance of the nanocomposite is a consequence of low bandgap energy of GCuO as well as the conducting nature of GNPs, that causes fast photo excitation of electrons and lengthens the recombination lifetime of charge carriers respectively.  相似文献   

9.
In this research, novel ternary Ag/αFe2O3-rGO nanocomposites with various contents of GO were synthesized via a facile one-pot hydrothermal method. Ag/αFe2O3-rGO nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectrometer (EDX), photoluminescence (PL) spectroscopy, and Fourier transform infrared (FTIR). The results showed that hematite nanoparticles and Ag nanoparticles were well decorated on the graphene surface. Photocatalytic activity of Ag/αFe2O3-rGO ternary nanocomposites and pure Ag/αFe2O3 was investigated for photodegradation of Congo red dye solution as a model pollutant under UV light irradiation. The ternary nanocomposite with 1.8?mg/ml GO aqueous solution concentration shows higher degradation efficiency under UV light irradiation than the pure Ag/αFe2O3 and the nanocomposites with other GO aqueous solution concentrations. It was observed that the adsorption of the dyes on the nanocomposites surface is dependent on the graphene content due to a decrease in the recombination rate, particles size, and increase charge carrier transfer. The results show that the Ag/αFe2O3-rGO nanocomposite can be used as an excellent photocatalytic material for degradation of Congo red dye in wastewater. A possible photocatalytic mechanism was proposed for degradation of Congo red dye.  相似文献   

10.
《Ceramics International》2015,41(8):9671-9679
The present work is focused on the preparation of hybrid ZnO/TiO2/Ag2O nanocomposite for enhanced photocatalytic activity. The resultant samples are characterized by using XRD, SEM, EDX, HR-TEM, UV-DRS, BET and XPS techniques. X-ray diffraction analysis indicates the co-existence of wurtzite, anatase and cubic phases in ZnO/TiO2/Ag2O nanocomposite. The band gap energy value of the photocatalyst is 3.39 eV, which has been evidenced from UV–visible diffuse reflectance spectroscopy measurements. Photocatalytic degradation of methylene blue dye has been investigated by using UV–visible spectrophotometer. From the result, it has been concluded that ZnO/TiO2/Ag2O nanocomposite has proven to be an efficient photocatalyst under UV irradiation when compared to that of mono and binary oxide systems. Further, the possible photodegradation mechanism is proposed to support the enhancement of photocatalytic activity towards degradation of dyes.  相似文献   

11.
Polylactide (PLA) nanocomposite was prepared by melt blending of PLA and transition metal ion (TMI) adsorbed montmorillonite (MMT). PLA nanocomposite was characterized for mechanical performance, and the results revealed that the tensile modulus, flexural modulus, and impact strength were increased marginally. The nanocomposite was optimized at 5 wt% of TMI‐modified MMT (TMI‐MMT) loading. Thermogravimetric analysis displayed increase in onset of degradation temperature, and differential scanning calorimetry showed marginal increase in glass transition temperature (Tg) and melting temperature (Tm) in case of PLA nanocomposites, when compared with virgin PLA. The flammability testing of nanocomposites indicated good fire retardance characters. X‐ray diffraction patterns of TMI‐MMT and the corresponding nanocomposites indicated an intercalation of the metal ions into the clay interlayer. Fourier transform infrared spectroscopy analysis indicate formation of [Zn(EDA)2]2+ and [Cu(EDA)2]2+ complexes in the MMT interlayer. Dynamic mechanical analysis shows increase in glass transition temperature (Tg) and storage modulus (E′) in case of PLA nanocomposites reinforced with 5 wt% modified MMT. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

12.
An interpenetrating polymer network (IPN) based on the sodium alginate (A) and partially neutralized poly(methacrylic acid) (MAA) was prepared by free radical polymerization followed by additional cross‐linking of sodium alginate with calcium ions. Obtained material (A/MAA IPN) was characterized by FTIR spectroscopy, thermogravimetric analysis, scanning electron microscopy, and rheological measurements. Swelling behavior of synthetized IPN has been also investigated. TiO2 nanoparticles (TiO2 NPs) were immobilized onto A/MAA IPN by dip‐coating method and obtained TiO2/IPN nanocomposite was used for removal of the methylene blue (MB) from aqueous solution. The photodegradation (under illumination) and sorption (in the dark) processes for dye removal were monitored through decrease of dye concentration in the solution by UV/VIS spectrometer. The TiO2/IPN nanocomposite sorbed approximately 93% of the MB from a 10 mg L?1 MB solution in the dark, but no degradation occurred. Likewise, more than 93% of dye was removed after 8 h of illumination. However, after 24 h of illumination, the samples were discolored indicating that dye molecules were successfully degraded. Thus, the TiO2/IPN nanocomposite could be utilized in the photodegradation–sorption process for the abatement of pollutants in water. POLYM. ENG. SCI., 55:2511–2518, 2015. © 2015 Society of Plastics Engineers  相似文献   

13.
Hydrogel silver nanocomposites have been used in applications with excellent antibacterial performance. Acrylic acid (AA)/itaconic acid (IA) hydrogels silver nanocomposites were prepared and applied as a coating on a textile substrate. Hydrogel matrices were synthesized first by the polymerization of an AA/IA aqueous (80/20 v/v) solution and mixed with 2‐2‐azobis(2‐methylpropionamide) diclorohydrate and N,N′‐methylene bisacrylamide until the hydrogel was formed. Silver nanoparticles were generated throughout the hydrogel networks with an in situ method via the incorporation of the silver ions and subsequent reduction with sodium borohydride. Cotton (C) and cotton/polyester (CP) textile fibers were then coated with these hydrogel silver nanocomposites. The influence of these nanocomposite hydrogels on the properties of the textile fiber were investigated by infrared spectroscopy (attenuated total reflectance), scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, and antibacterial tests against Pseudomona aeruginosa and Staphylococcus aureus. The better conditions, in which no serious aggregation of the silver nanoparticles occurred, were determined. It was proven that the textiles coated with hydrogels containing nanosilver had an excellent antibacterial abilities. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2713–2721, 2013  相似文献   

14.
A novel poly(ethylene glycol)‐based nanocomposite hydrogels containing Fe‐octacarboxylic acid phthalocyanine (FeOCAP)/magnetic attapulgite was successfully synthesized by in situ polymerization. Fourier transform infrared spectroscopy result showed the FeOCAP/magnetic attapulgite was successfully introduced into the hydrogels matrix. Besides, the hydrogen bond interactions existed between FeOCAP/attapulgite and hydrogels, which acted as the crosslink points in the hydrogels network, and meanwhile, stabilized the nanoparticles in hydrogel without phase separation. Photocatalytic activity studies confirmed that the as‐prepared nanocomposite hydrogels had excellent photocatalytic activity for rhodamine B photodegradation, as compared to the pure hygrogels. The rhodamine B removal percentage of the hydrogels could reach nearly 100% and the kinetics of photocatalytic degradation reaction was described by the Langmuir–Hinshelwood kinetics models. The hydrogels could be reused more than five times without losing any photodegradation ability, which indicated that the hydrogels would be potentially useful in dyes wastewater treatments. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45428.  相似文献   

15.
The use of polymeric films incorporated with zeolite-TiO2 composites associated with UV radiation can be an alternative in the removal of volatile organic compounds (VOCs) through the adsorption and photodegradation processes. This study produced poly(lactic acid) (PLA) films incorporated with 13× zeolite, TiO2, and 13×-TiO2 zeolite composite to remove n-butanol and evaluate the by-products generated in the process. The results showed that 13× zeolite and TiO2 added individually or as a composite to PLA, gave the polymer matrix a significant increase in the removal capacity of n-butanol. The best performance was presented by the zeolite-TiO2, composite, confirming a synergistic effect. However, the formation of CO and CO2 exceeded the expected values, with the verification that the polymeric matrix underwent photodegradation action by TiO2. The polymeric film only containing zeolite is the most suitable for the removal of VOCs, as it did not present degradation of the PLA, generating a lower concentration of by-products.  相似文献   

16.
PLA/PBAT blends and PLA/PBAT/MWNT nanocomposite systems were prepared via a melt mixing process to examine their thermal and rheological properties. To compare the polymer blend/MWNT nanocomposite with a pure polymer/MWNT nanocomposite, PLA/MWNT, PBAT/MWNT, and PLA/PBAT/MWNT nanocomposite systems were prepared. TEM and SEM were used to observe that one phase has better affinity with the MWNT, while the MWNT was found to increase both the thermal properties of the PLA/PBAT blends and rheological properties of the PLA/PBAT/MWNT nanocomposite with distinct shear‐thinning behavior due to the addition of the MWNT. An increase in the storage (G′) and loss (G″) moduli for the PLA/PBT/MWNT nanocomposite was also observed.

  相似文献   


17.
In this study, poly(lactic acid) (PLA)/poly[(butylene succinate)-co-adipate] (PBSA) blend and its nanocomposites with layered double hydroxides (LDH) containing surface stearic acid functional groups (SaLDH) were prepared using the extrusion method, where the weight ratio of PLA/PBSA was fixed at 80/20, while that of the SaLDH varied from 0.1, 0.5, and 1.0 wt%. The characterization of SaLDH using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Thermogravimetric analysis (TGA) confirmed the presence of stearic acid moieties on the LDH surface. Comprehensive characterization of nanocomposites showed concurrent improvement of the thermal, mechanical, and oxygen gas barrier properties of nanocomposite containing 0.5 wt% of SaLDH. These properties are shown to result from improved interfacial interaction between the polymer matrices and the homogeneous distribution of nanoclay particles obtained at 0.5 wt% SaLDH concentration. The nanocomposite material thus shows high prospects in the industrial development of environmentally sustainable food and cosmetic packaging applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48654.  相似文献   

18.
In this report, poly(aniline‐co‐anthranilic acid)/zinc oxide (poly(ANI‐co‐ANA)/ZnO) nanocomposites were prepared by in‐situ chemical oxidative polymerization. Transmission electron microscopy (TEM), X‐ray diffraction, Fourier transform infrared spectroscopy, and ultraviolet–visible spectroscopy measurements were used to characterize the resulting pure copolymer and nanocomposite. TEM analysis showed that the nanoparticles with a mean diameter of 15–25 nm were dispersed in the copolymer matrix. Thermogravimetric analysis indicated that the nanocomposite had a higher decomposition temperature than the pure copolymer. The conductivity measurements showed the resulting nanocomposite possessed higher conductivity as compared to the pure copolymer. Photocatalytic removal of Cr(VI) and Ni(II) from aqueous solution using as‐synthesized nanocomposite under UV‐light irradiation was studied. The reduction patterns of Cr(VI) and Ni(II) were better fitted to first‐order kinetic model. The nanocomposite was also applied as a photocatalyst for the degradation of methylene blue dye. The result revealed substantial degradation of the dye (∼82%) under UV‐light illumination. POLYM. COMPOS., 35:839–846, 2014. © 2013 Society of Plastics Engineers  相似文献   

19.
Hydrolytic degradation of a nanocomposite of poly(L‐lactic acid), PLA, and a layered double hydroxide (LDH) modified with the drug 4‐biphenyl acetic acid (Bph) has been studied. PLA/LDH‐Bph nanocomposite was prepared by solvent casting with 5 wt % of drug modified LDH and the hydrolytic degradation was carried out in a PBS solution at pH 7.2 and 37 °C. Neat PLA with 5 wt % 4‐biphenyl acetic acid was studied as reference material (PLA/Bph). The materials were studied by WAXS, TEM, TGA, DSC, SEM, FTIR, SEC and contact angle measurements. For PLA/Bph, an acid catalytic effect, caused by the drug, accelerates PLA mass loss. However, for PLA/LDH‐Bph, the presence of LDH produces a barrier effect that initially reduces the diffusion of the oligomers produced during hydrolytic degradation. DSC results demonstrate that Bph induces faster PLA crystallization and this effect is reduced in PLA/LDH‐Bph nanocomposites because of their lower drug content. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43648.  相似文献   

20.
Polylactide/polyethylene blends (PLA/PE) and their nanocomposites were prepared via the melt blending process. The effects of organoclay, compatibilizer (PE‐g‐MA), and PE content on morphology, linear viscoelastic properties of the melt and cold crystallization of the samples have been studied. The Palierne model is applied to predict the rheological behavior of unfilled blends. It implies that there is a quantitative agreement between model and experimental data for low PE content blend. From WAXD and the rheological behavior, it is shown that organoclay exhibits a higher extent of intercalation and dispersion in PLA/PE/organoclay nanocomposite than in PLA/organoclay nanocomposite. The DSC results present that the addition of compatibilizer into blend nanocomposite increases cold crystallization temperature of PLA by about 3°C. This can be explained by the role of compatibilizer in transfer of a part of organoclay from PLA matrix to droplets resulting in increase of PLA chain mobility and, therefore, slightly greater cold crystallization temperature. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41300.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号