首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we fabricated poly(ethylene terephthalate) (PET)/clay, PET/poly(ethylene glycol‐co‐1,3/1,4‐cyclohexanedimethanol terephthalate) (PETG), and PET/PETG/clay nanocomposite plates and biaxially stretched them into films by using a biaxial film stretching machine. The tensile properties, cold crystallization behavior, optical properties, and gas and water vapor barrier properties of the resulting films were estimated. The biaxial stretching process improved the dispersion of clay platelets in both the PETG and PET/PETG matrices, increased the aspect ratio of the platelets, and made the platelets more oriented. Thus, the tensile, optical, and gas‐barrier properties of the composite films were greatly enhanced. Moreover, strain‐induced crystallization occurred in the PET/PETG blend and in the amorphous PETG matrix. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42207.  相似文献   

2.
Dispersed poly(ethylene terephthalate) (PET)/clay nanocomposites can lead to materials with superior barrier and mechanical properties. PET/clay nanocomposites were prepared by melting extrusion of PET with as‐received or supercritical carbon dioxide (scCO2) predispersed Cloisite® 30B (30B). The predispersion of 30B was assessed by WAXD, SEM, and TGA, and results indicated that scCO2 processing could predisperse 30B and the surface modification of the clay was preserved after processing. The structure of PET/30B nanocomposites was investigated by WAXD and TEM confirming that PET has penetrated into the clays inter‐galleries and the predispersed clays lead to improved interfacial interaction and homogenous clay dispersion. Both tensile strength and Young's modulus were improved by 12.1% and 24.9% respectively, as incorporating of 3 wt % of scCO2 processed clay. Differential scanning calorimetry (DSC) results indicated that clay particles served as nucleation agent could increase the crystallinity whereas had no impact on melting process. In addition, with the addition of 1 wt % of predispersed clay, a significant reduction of oxygen permeation (~33%) was achieved at 23 °C and the maximum reduction (44%) was achieved by adding 3 wt % processed clay. Moreover, we confirmed the effect of temperature on the permeation of PET/30B nanocomposites depended both on the Arrhenius behavior of the organic phases and tortuous path effects, where improved clay dispersion resulted in a higher effective activation energy. Moreover, the transparency of PET matrix was preserved for all nanocomposites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44779.  相似文献   

3.
In this study, poly(ethylene terephthalate)/organo‐montmorillonite (PET/OMMT) nanocomposites were melt‐compounded using twin screw extruder followed by injection molding. Maleic anhydride grafted styrene‐ethylene/butylene‐styrene (SEBS‐g‐MAH) was used to improve the impact properties of the PET/OMMT nanocomposites. The notched and un‐notched impact strength of PET/OMMT nanocomposites increased at about 2.5 times and 5.5 times by the addition of 5 wt % of SEBS‐g‐MAH. Atomic force microscopy (AFM) scans were taken from the polished surface of both PET/OMMT and SEBS‐g‐MAH toughened PET/OMMT nanocomposites. The addition of SEBS‐g‐MAH altered the phase structure and clay dispersion in PET matrix. It was found that some of the OMMT silicate layers were encapsulated by SEBS‐g‐MAH. Further, the addition of SEBS‐g‐MAH decreased the degree of crystallinity of the PET/OMMT nanocomposites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
A novel organic montmorillonite, which could act as both polycondensation catalyst of poly(ethylene terephthalate) (PET) and filler of PET/clay nanocomposites, was prepared. Original montmorillonite was first treated with different amounts of poly(vinylpyrrolidone) (PVP), and then intercalated by TiO2/SiO2 sol to gain polycondensation catalytic activity. The acquired clay possessed excellent thermal stability and would not degrade during the polycondensation step. PET/clay nanocomposites were prepared via in‐situ polymerization using the organo‐clay as polycondensation catalysts. The morphologies of the nanocomposites were characterized by X‐ray diffraction and transmission electron microscope. The results indicated that the amount of PVP and TiO2/SiO2 sol strongly affected the dispersion state of the clay, and finally, partially exfoliated PET/clay nanocomposites were obtained. The nanocomposites had better properties than pure PET due to the incorporation of the delaminated clay layers. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

5.
Poly(ethylene terephthalate) (PET)/clay nanocomposites (PCNs) with N‐methyl diethanol amine (MDEA)‐based organoclays are synthesized by using in situ polymerization. Four kinds of MDEA‐based materials are prepared and used as organifiers of pristine montmorillonite. The clay treated with the organifiers has a d‐spacing range that is about 14–21 Å. The PCNs with these organoclays are characterized by using wide‐angle X‐ray diffraction, scanning and transmission electron microscopy, atomic force microscopy, capillary rheometry, and tensile and barrier testing. The PCNs form an intercalated and delaminated structure. The well‐stacked nanoclays are broken down into small pieces in the PET matrix and the thickness of the clay bundle decreases to 20 nm. The melt viscosity and tensile strength of these PCNs increases with only 0.5 wt % clay. In oxygen barrier testing, the PCN with 1 wt % well‐dispersed organoclay shows a twofold higher barrier property than pure PET. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1262–1271, 2007  相似文献   

6.
Antimony doped tin oxide (ATO) nanoparticles modified poly(ethylene terephthalate) (PET) composites used for manufacturing antistatic PET fiber were synthesized by in situ polymerization. The crystallization and multiple melting behavior of the nanocomposites were systemically investigated by means of Differential Scanning Calorimeter (DSC), Fourier Transform Infrared (FTIR), X‐ray Diffraction (XRD) techniques. The degree of crystallinity in nanocomposites increased with increasing ATO content. Smaller and more incomplete crystals are presented in the crystalline regions of the nanocomposites with increasing the content of ATO, which could be attributed to heterogeneous nucleation effects of ATO nanoparticles. Dynamic Mechanical Analysis (DMA) measurements showed that the storage moduli of the nanocomposites increased with increasing the content of ATO, due to formation of immobilized layer between polymer and filler. The interactions between ATO and PET molecules result in high tan δ for the PET/ATO nanocomposites. Percolation threshold of PET/ATO hybrid fibers prepared by the nanocomposites at room temperature was as low as 1.05 wt %, much lower than that of the composites filled with conventional conductive particles. Adding ATO nanoparticles obviously improves the conductivity of PET. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

7.
An alkylammonium intercalated montmorillonite (A‐MMT) was modified by edge grafting with 3‐glycidoxypropyltrimethoxysilane. In comparison with poly(ethylene terephthalate) (PET)/A‐MMT, the resultant grafted clay, S‐A‐MMT, exhibited improved miscibility with PET matrix and revealed better dispersion state in the melting compounded PET/S‐A‐MMT nanocomposites. As a result, the PET/S‐A‐MMT nanocomposite had slower degradation rate owing to the enhanced clay barrier effect. Meanwhile, the nanocomposite exhibited lower degradation onset temperature under nitrogen because of the clay catalysis effect, which can be explained by the decreasing degradation reaction energy calculated from Coats–Redfern method of degradation kinetics. In the other hand, nanocomposite with better clay dispersion state exhibited increasing thermal oxidative stability due to clay barrier effect of hindering oxygen to diffuse in, which accorded with the continuous and compact char surface formed during polymer degradation. The clay catalysis and barrier effect of silicate layers were presented directly in isothermal oxidative TGA experiment. Furthermore, the mechanical and crystallization properties of PET/clay nanocomposites were investigated as well. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

8.
This study deals with the generation of poly(ethylene terephthalate)/organoclay nanocomposite filaments by the melt‐spinning method and with the investigation of their morphological and dyeing properties. Different montmorillonite types of clay (Resadiye and Rockwood) were modified using different intercalating agents, and poly(ethylene terephthalate) nanocomposite filaments containing 0.5 and 1 wt% organoclays were prepared. Afterwards, the filaments were dyed with two disperse dyes (Setapers Red P2G and Setapers Blue TFBL‐NEW) at different temperatures (100, 110, and 120 °C) in the absence/presence of a carrier. Organoclays and poly(ethylene terephthalate)/organoclay nanocomposites showed an increased d‐spacing between clay layers. Irrespective of clay and surfactant type, poly(ethylene terephthalate)/organoclay nanocomposite filaments dyed at 120 °C in the presence of only a very small amount of carrier showed appreciable dyeability in comparison with neat poly(ethylene terephthalate). The dyeability of the organoclay‐containing poly(ethylene terephthalate) samples was found to be better in spite of having increased degrees of crystallinity. Moreover, the colour fastness properties of the clay‐containing samples were not affected adversely.  相似文献   

9.
Poly(ethylene terephthalate) (PET)/Cloisite 30B (C30B) nanocomposites containing different concentrations of the organoclay were prepared using two different twin‐screw extrusion processes: conventional melt mixing and water‐assisted melt mixing. The reduction of the molecular weight of the PET matrix, caused by hydrolysis during the water‐assisted extrusion, was compensated by subsequent solid‐state polymerization (SSP). X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses showed intercalated/exfoliated morphology in all PET/C30B nanocomposites, with a higher degree of intercalation and delamination for the water‐assisted process. Rheological, thermal, mechanical, and gas barrier properties of the PET nanocomposites were also studied. Enhanced mechanical and barrier properties were obtained in PET‐C30B nanocomposites compared to the neat PET. The nanocomposites exhibited higher tensile modulus and lower oxygen permeability after SSP. The elongation at break was significantly higher for SSP nanocomposites than for nanocomposites processed by conventional melt mixing. POLYM. ENG. SCI., 54:1879–1892, 2014. © 2013 Society of Plastics Engineers  相似文献   

10.
Motivated by the technological need for poly(ethylene terephthalate) materials with improved barrier properties together with the requirement for sustainability this study focuses on an eco-friendly sulfonated polyester as clay compatibilizer to facilitate polymer mixing during melt compounding. We demonstrate that the nanocomposites based on sulfonated polyester are a reliable alternative to their imidazolium counterparts, exhibiting enhanced properties (water vapor and UV transmission), without sacrificing the excellent transparency, clarity and mechanical strength of the matrix.  相似文献   

11.
A series of nanocomposites of poly(ethylene terephthalate) (PET) with the organoclay dodecyltriphenylphosphonium‐mica (C12PPh‐mica) were synthesized with the in situ polymerization method. PET hybrid fibers with various organoclay concentrations were melt‐spun at various draw ratios (DRs) to produce monofilaments. The thermomechanical properties and morphologies of the PET hybrid fibers were characterized with differential scanning calorimetry, thermogravimetric analysis, wide‐angle X‐ray diffraction, electron microscopy, and universal tensile analysis. The organoclay was intercalated in the polymer matrix at all magnification levels, and some of the agglomerated organoclay layers were greater than 50 nm thick. The thermal stabilities and initial tensile moduli of the hybrid fibers increased with an increasing clay content for DR = 1. For DR = 1, the ultimate tensile strengths of the PET hybrid fibers increased with the addition of clay up to a critical clay loading and then decreased above that critical concentration. However, the tensile mechanical properties of the hybrid fibers did not improve with increasing DR. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2009–2016, 2005  相似文献   

12.
Nanocomposites of poly(ethylene terephthalate) PET with a partially synthetic fluoromica were prepared by melt mixing and extruded into sheet and subjected to large‐scale biaxial stretching. Transmission electron microscopy (TEM) analysis of the mica tactoids showed that biaxial stretching had caused the tactoids to be more orientated and with improved exfoliation. The moduli of the nanocomposites were enhanced with increasing mica loading and the reinforcement effect was higher when the stretch ratio was 2 or 2.5, accommodated by having more aligned tactoids and reduced agglomeration. Enhancement in modulus was less pronounced for a stretch ratio of 3. Storage modulus was enhanced more significantly above the glass transition temperature. The barrier properties were enhanced by addition of mica before and after stretching. The Halpin‐Tsai theory underpredicted the relative modulus of the PET nanocomposites, whereas the Nielsen model over‐predicted the relative permeability. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

13.
This paper presents a new approach for the preparation of poly(ethylene terephthalate) (PET)/clay nanocomposites using surfactant‐free clay (sodium montmorillonite, Na‐MMT) with trisilanolphenyl polyhedral oligomeric silsesquioxane (Tsp‐POSS) as dispersant. The dispersion of clay in the PET/Na‐MMT/Tsp‐POSS nanocomposites is enhanced over that in PET/Na‐MMT by using a very small amount of Tsp‐POSS, which acts as functional spacer to keep clay platelets apart and pull monomers in, and, at the same time, acts as a PET chain extender. As a result, thermomechanical properties and thermo‐oxidative stability of PET/Na‐MMT/Tsp‐POSS are improved simultaneously compared with those of PET/organoclay nanocomposites. © 2013 Society of Chemical Industry  相似文献   

14.
A kind of clay with fibrous morphology, attapulgite (AT), was used to prepare poly (ethylene terephthalate) (PET)/AT nanocomposites via in situ polymerization. Attapulgite was modified with Hexadecyltriphenylphosphonium bromide and silane coupling agent (3‐glycidoxypropltrimethoxysilane) to increase the dispersion of clay particles in polymer matrix and the interaction between clay particles and polymer matrix. FTIR and TGA test of the organic‐AT particles investigated the thermal stability and the loading quantity of organic reagents. XRD patterns and SEM micrographs showed that the organic modification was processed on the surface of rod‐like crystals and did not shift the crystal structure of silicate. For PET/AT nanocomposites, it was revealed in TEM that the fibrous clay can be well dispersed in polymer matrix with the rod‐like crystals in the range of nanometer scale. The diameter of rod‐like crystal is about 20 nm and the length is near to 500 nm. The addition of the clay particles can enhance the thermal stability and crystallization rate of PET. With the addition of AT in PET matrix, the flexural modulus of those composites was also increased markedly. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1279–1286, 2007  相似文献   

15.
BACKGROUND: Poly(ethylene terephthalate) (PET) is widely used in the packaging industry. In order to enhance the mechanical and barrier properties, nanoscale fillers are added to PET matrices to form nanocomposites. In the work reported here, a melt‐processed PET/synthetic mica nanocomposite sheet was characterised to determine the effect of the incorporation of synthetic mica on the sheet properties and also to see if these properties are an indicator of subsequent performance under high‐speed, high‐temperature biaxial deformation, typical of processes such as stretch blow moulding. RESULTS: The incorporation of synthetic mica was found to enhance the modulus, particularly above the glass transition temperature, and barrier properties of the extruded sheet and it significantly altered the deformation behaviour of PET under biaxial deformation. The plastic flow of PET during biaxial deformation was found to diminish for the nanocomposites, and strain hardening occurred earlier. CONCLUSION: The modulus and barrier properties of PET were enhanced by the incorporation of synthetic mica. Clay loading also altered the biaxial deformation behaviour of PET. Copyright © 2009 Society of Chemical Industry  相似文献   

16.
The effects of extrusion conditions on the mechanical properties of recycled poly(ethylene terephthalate) (rPET)/clay nanocomposites were studied. Nanocomposites of recycled PET containing 2.5 and 5.0 wt % of montmorillonite modified with organophilic quaternary ammonium salt (DELLITE 67G) were prepared by melt compounding using a corotating twin‐screw type extruder at two different screw rotation speeds: 250 and 150 rpm. The highest value of Young's modulus was found for low screw rotation speed (150 rpm). Morphological analysis using transmission electron microscopy (TEM) revealed the presence of fully exfoliated clay platelets in samples prepared at 150 rpm. It was concluded that the screw rotation speed should be optimized when preparing recycled PET/clay nanocomposites by melt compounding. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
In this study, amorphous poly(ethylene terephthalate‐co‐1,3/1,4‐cyclohexylenedimethylene terephthalate) (PETG)/organoclay nanocomposites was synthesized by the in situ intercalation polymerization of terephthalic acid, ethylene glycol, 1,3/1,4‐cyclohexanedimethanol, and organoclay. The organoclay was obtained by modifying sodium montmorillonite (clay) with hexadecyl triphenylphosphonium bromide. The thermal, mechanical, optical, and gas barrier properties of these PETG nanocomposites with various organoclay contents (0–3 wt%) were discussed. The differential scanning calorimetry and X‐ray analyses revealed that all of the nanocomposites were amorphous. X‐ray diffraction and transmission electron micrographs showed that the organoclay was well dispersed in the polymer matrix, although some parts of the agglomerated layers remained on the scale of several hundreds of nanometers. The thermal stability and the mechanical property of the nanocomposites increased with organoclay content. The optical transmittances of nanocomposites that contained 0.5, 1, and 3 wt% of organoclay were 86.8%, 84.4%, and 77.4%, respectively. The oxygen transmission rate of the nanocomposite that contained 3 wt% of organoclay was about 50% of the PETG base polymer. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers  相似文献   

18.
In the present work, attempts were made to investigate the thermal and mechanical properties of melt‐processed poly(ethylene terephthalate) (PET)/poly(ethylene 2,6‐naphthalate) (PEN) blends and its nanocomposites containing graphene by using differential scanning calorimetry and tensile test experimenting. The results showed that crystallinity, which depends on a blend ratio, completely disappeared in a composition of 50/50. By introducing graphene to PET, even in low concentrations, the crystallinity of samples increased, while the nanocomposite of PEN indicated reverse behavior, and the crystallinity was reduced by adding graphene. In the case of PET‐rich (75/25) nanocomposite blends, by increasing the nano content in the blend, the crystallinity of the samples was enhanced. This behavior was attributed to the nucleating effect of graphene particles in the samples. From the results of mechanical experiments, it was found in PET‐rich blends that by increasing the PEN/PET ratio, the modulus of samples decreased, whereas in the case of PEN‐rich blends, a slight increment of modulus is seen as a result of the increment of the PEN/PET ratio. The two contradicting behaviors were attributed to the reduction of crystallinity of PET‐rich blends by enhancement of PEN/PET ratio and the rigid structure of PEN chains in PEN‐rich blends. Unlike the different modulus change of PET‐rich and PEN‐rich blends, the nanocomposites of these blends similarly indicated an increment of modulus and characteristics of rigid materials by increasing the nano content. Furthermore, the same behavior was detected in nanocomposites of each polymer (PET and PEN nanocomposites). The alteration from ductile to rigid conduction was related to the impedance in the role of graphene plates against the flexibility of polymer chains and high values of graphene modulus. J. VINYL ADDIT. TECHNOL., 23:210–218, 2017. © 2015 Society of Plastics Engineers  相似文献   

19.
Poly(ethylene terephthalate) (PET)/silica nanocomposites were successfully prepared by in situ polymerization. Silica nanoparticles were uniformly dispersed in the process of polymerization. By means of hot‐stage polarization microscope and DSC, the influence of nanosilica on the crystallization of PET/silica nanocomposites has been clarified. The results show that nanosilica does not behave as a nucleating agent in PET but postpones the appearance of crystallite. This phenomenon is very favor to improve spinnability. The investigation on melt spinning of PET/silica nanocomposites also shows that it is advantageous to spinning with descending the spinning temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2564–2568, 2007  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号