首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of sulfonated poly(ether sulfone) (SPES)/silica composite membranes were prepared by sol–gel method using tetraethylorthosilicate (TEOS) hydrolysis. Physico–chemical properties of the composite membranes were characterized by thermogravimetric analysis (TGA), X‐ray diffraction (XRD), scanning electron microscope–energy dispersive X‐ray (SEM–EDX), and water uptake. Compared to a pure SPES membrane, SiO2 doping in the membranes led to a higher thermal stability and water uptake. SEM–EDX indicated that SiO2 particles were uniformly embedded throughout the SPES matrix. Proper silica loadings (below 5 wt %) in the composite membranes helped to inhibit methanol permeation. The permeability coefficient of the composite membrane with 5 wt % SiO2 was 1.06 × 10?7 cm2/s, which was lower than that of the SPES and just one tenth of that of Nafion® 112. Although proton conductivity of the composite membranes decreased with increasing silica content, the selectivity (the ratio of proton conductivity and methanol permeability) of the composite membrane with 5 wt % silica loading was higher than that of the SPES and Nafion® 112 membrane. This excellent selectivity of SPES/SiO2 composite membranes could indicate a potential feasibility as a promising electrolyte for direct methanol fuel cell. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) composite membranes are fabricated through electrostatic layer‐by‐layer (LbL) self‐assembly method with chitosan (CS) and phosphotungstic acid (PWA) to enhance the proton conductivity and stability. The results demonstrate that LbL self‐assembly has different effects on the SPPESK membrane substrates with different sulfonation degrees (DSs). It elevates proton conductivity of the SPPESK membrane of lower DS and enhances swelling stability of the SPPESK membrane of higher DS. For instance, at 80°C, proton conductivity of the SPPESK0.74/(CS/PWA)1 membrane (lower DS) increases by 16%–96.49 mS cm?1, and swelling ratio of the SPPESK1.01/(CS/PWA)3 membrane (higher DS) decreases from 58 to 29%. Attribute to the electrostatic interaction and ion cross‐linking networks, permeability of the SPPESK0.74/(CS/PWA)3 membrane and the SPPESK1.01/(CS/PWA)5 membrane are reduced by 45 and 30%, respectively. The results indicate that the LbL self‐assembly has broadened the available DS range for fuel cell applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42867.  相似文献   

3.
L. Wu  D. Zhou  H. Wang  Q. Pan  J. Ran  T. Xu 《Fuel Cells》2015,15(1):189-195
For improving stability without sacrificing ionic conductivity, ionically cross‐linked proton conducting membranes are fabricated from Na+‐form sulfonated poly(phthalazinone ether sulfone kentone) (SPPESK) and H+‐formed sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO). Ionically acid‐base cross‐linking between sulfonic acid groups in SPPO and phthalazone groups in SPPESK impart the composite membranes the good miscibility and electrochemical performance. In particular, the composite membranes possess proton conductivity of 60–110 mS cm−1 at 30 °C. By controlling the protonation degree of SPPO within 40–100 %, the composite membranes with favorable cross‐linking degree are qualified for application in fuel cells. The maximum power density of the composite membrane reaches approximately 1100 mW cm−2 at the current density of 2800 mA cm−2 at 70 °C.  相似文献   

4.
A series of novel composite methanol‐blocking polymer electrolyte membranes based on sulfonated polyimide (SPI) and aminopropyltriethoxysilane (APTES) doping with sulfonated mesoporous silica (S‐mSiO2) were prepared by the casting procedure. The microstructure and properties of the resulting hybrid membranes were extensively characterized. The crosslinking networks of amino silica phase together with sulfonated mesoporous silica improved the thermal stability of the hybrid membranes to a certain extent in the second decomposition temperature (250–400°C). The composite membranes doping with sulfonated mesoporous silica (SPI/APTES/S‐mSiO2) displayed superior comprehensive performance to the SPI and SPI/APTES membranes, in which the homogeneously embedded S‐mSiO2 provided new pathways for proton conduction, rendered more tortuous pathways as well as greater resistance for methanol crossover. The hybrid membrane with 3 wt % S‐mSiO2 into SPI/APTES‐4 (SPI/A‐4) exhibited the methanol permeability of 4.68 × 10?6 cm2 s?1at 25°C and proton conductivity of 0.184 S cm?1 at 80°C and 100%RH, while SPI/A‐4 membrane had the methanol permeability of 5.16 × 10?6 cm2 s?1 at 25°C and proton conductivity of 0.172 S cm?1 at 80°C and 100%RH and Nafion 117 exhibited the values of 8.80 × 10?6 cm2 s?1 and 0.176 S cm?1 in the same test conditions, respectively. The hybrid membranes were stable up to about 80°C and demonstrated a higher ratio of proton conductivity to methanol permeability than that of Nafion117. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Poly(vinylidene fluoride)/sulfonated poly(phthalazinone ether sulfone ketone) (PVdF/SPPESK) blend membranes are successfully prepared by solution blending method for novel proton exchange membrane (PEM). PVdF crystallinity, FTIR‐ATR spectroscopy, thermal stability, morphology, water uptake, dimension stability, and proton conductivity are investigated on PVdF/SPPESK blends with different PVdF contents. XRD and DSC analysis reveal that the PVdF crystallinity in the blends depends on PVdF content. The FTIR‐ATR spectra indicate that SPPESK remains proton‐conducting function in the blends due to the intactness of ? SO3H group. Thermal analysis results show a very high thermal stability (Td1 = 246–261°C) of the blends. PVdF crystallinity and morphology study demonstrate that with lower PVdF content, PVdF are very compatible with SPPESK. Also, with lower PVdF content, PVdF/SPPESK blends possess high water uptake, e.g., P/S 10/90 and P/S 15/85 have water uptake of 135 and 99% at 95°C, respectively. The blend membranes also have good dimension stability because the swelling ratios are at a fairly low level (e.g., 8–22%, 80°C). PVdF/SPPESK blends with low PVdF content exhibit very high proton conductivity, e.g., at 80°C, P/S 15/85 and P/S 10/90 reach 2.6 × 10?2 and 3.6 × 10?2 S cm?1, respectively, which are close to or even higher than that (3.4 × 10?2 S cm?1) of Nafion115 under the same test condition. All above properties indicate that the PVdF/SPPESK blend membranes (particularly, with 10–20% of PVdF content) are very promising for use in PEM field. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Composite membranes of sulfonated poly(ethersulfone)/1,1-carbonyl diimidazole/1-(3-aminopropyl)-silane/silica (SPES/CDI/AS/SiO2) with silica of various contents (3, 5 and 8 wt%) were prepared as electrolytes for direct methanol fuel cells (DMFCs). Comparison was made with pure SPES and SPES/SiO2. The properties of the composite membranes were studied by FTIR, TGA, XRD, water and methanol uptake, proton conductivity. SPES/CDI/AS/SiO2 membranes were also characterized by scanning electron microscopy (SEM), which showed good adhesion between the modified sulfonic acid (-SO3H) groups of SPES and silica because of cross-linking with covalent bond formation and reduced cavities in the composites. This effect played an important role in reducing water uptake, methanol uptake and methanol permeability of the SPES/CDI/AS/SiO2 composites. The water and methanol uptake and also methanol permeability of the SPES/CDI/AS/SiO2 composite membrane with 8% SiO2 were found in the order 3.58%, 2.48% and 1.91×10?7 (cm2s?1), lower than those of SPES and Nafion 117. In SPES membrane of 16.94% level of sulfonation, the proton conductivity was 0.0135 s/cm at 25 °C, which approached that of Nafion 117 under the same conditions. Also, the proton conductivity of the SPES/CDI/AS/SiO2 8% membrane was 0.0186 s/cm, which was higher than that of SPES at room temperature. The preparation of SPES/SiO2 composites in the presence of AS and CDI, led to 63%, 56% and 64% reduction of water uptake, methanol uptake and methanol permeability, respectively without a sharp drop in proton conductivity of the composite membranes which featured a good balance between high proton conductivity, water and methanol uptake of SPES/CDI/AS/SiO2 membranes.  相似文献   

7.
Novel composite sulfonated poly(ether sulfone)(SPES)/phosphotungstic acid (PWA)/attapulgite (AT) membranes were investigated for direct methanol fuel cells (DMFCs). Physical–chemical properties of the composite membranes were characterized by FTIR, DSC, TGA, SEM‐EDX, water uptake, tensile test, proton conductivity, and methanol permeability. Compared with a pure SPES membrane, PWA, and AT doping in the membrane led to a higher thermal stability and glass transition temperature (Tg) as revealed by TGA and DSC. Tensile test indicated that lower AT content (3%) in the composite can significantly increase the tensile strength, while higher AT loading demonstrated a smaller contribution on strength. Proper PWA and AT loadings in the composite membranes can increase the proton conductivity and lower the methanol cross‐over. The proton conductivity of the SPES‐P‐A 10% composite membrane reached 60% of the Nafion 112 membrane conductivity at room temperature while the methanol permeability was only one‐fourth of that of Nafion 112 membrane. This excellent performances of SPES/PWA/AT composite membranes could indicate a potential feasibility as a promising electrolyte for DMFC. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
New composite proton exchange membrane was prepared by mixing a 1‐methyl‐2‐pyrrolidone (NMP) solution of sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO) in sodium form and brominated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (BPPO) for hydrophilic‐hydrophobic balance, then casting the solution as a thin film, evaporating the solvent, and treating the membrane with aqueous hydrochloric acid. The resulting membranes were subsequently characterized using FTIR‐ATR, SEM‐EDXA, and TGA instrumentation as well as measurements of basic properties such as ion exchange capacity (IEC), water uptake, proton conductivity, methanol permeability, and single cell performance. Water uptake, IEC, proton conductivity, and methanol permeability all increased with a corresponding increase of SPPO content. By properly compromising the conductivity and methanol permeability, membranes with 60–80 wt % SPPO content exhibited comparable proton conductivity to that of Nafion® 117, with only half the methanol permeability, thereby demonstrating higher single cell performance. The membranes developed in this study could thus be a suitable candidate electrolyte for proton exchange membrane fuel cells (PEMFCs). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
A novel proton-exchange polymer composite membrane was synthesized using Nafion®, tetraethoxysilane-modified carbon nanotubes (CNTs) and phosphotungstic acid-modified carbon nanotubes with the aim of using direct methanol fuel cells (DMFCs). Physicochemical properties of the modified CNTs and fabricated composite membranes were investigated by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, water uptake, thermogravimetric analysis, ion exchange capacity, proton conductivity and methanol permeability tests. It was demonstrated that chemical surface modification of CNTs and introduction of the phosphotungstic acid (PWA) groups effectively improved the performance of DMFC. It was found that the presence of PWA groups on the surface of CNTs led to the formation of strong electrostatic interactions between the PWA groups and clusters of sulfonic acid in Nafion® macromolecules. Hence, the incorporation of inorganic phosphotungstic super-acid-doped silicon oxide-covered carbon nanotubes (CNT@SiO2-PWA) into Nafion® matrices enhanced the proton conductivity of the prepared membranes. Moreover, the methanol permeability was reduced to 2.63 × 10?7 cm2 s?1 in comparison with the recast Nafion® membrane (2.25 × 10?6 cm2 s?1). Enhancing the proton conductivity and reducing the methanol permeability, the selectivity of the prepared nanocomposite membranes was enhanced to a greater value of 330,700 S s cm?3 as compared to the value of 38,222 S s cm?3 for recast Nafion®.  相似文献   

10.
S. Zhou  S. D. Hai  D. Kim 《Fuel Cells》2012,12(4):589-598
Sulfonated poly(arylene ether ketone) (SPAEK) possessing the pendant carboxylic acid groups was synthesized. The carboxylic acid groups of SPAEK were reacted with a cross‐linking reagent to prepare a cross‐linked membrane with a high ion exchange capacity (IEC), a high oxidative stability, and an excellent mechanical strength. The cross‐linking hindered the mobility of the polymer chains and thus strongly affected the water uptake and the methanol permeability of the membranes. Also, as the cross‐linker used in this study bore sulfonic acid groups, cross‐linking did not lead to a noticeable loss of the proton conductivity. The cross‐linked SPAEK membrane with 20% cross‐linking density, CSPAEK‐20% membrane, exhibited a high proton conductivity of 0.045 S cm–1 associated with a high IEC value of 1.78 mmol g–1 but a low methanol permeability of 4.3 × 10–7 cm2 s–1. The CSPAEK‐20% membrane also showed excellent cell performance and oxidation resistance.  相似文献   

11.
A series of acid–base polyimides with sulfonic acid groups in the side chains have been prepared, based on a new synthesized sulfonated diamine monomer containing pyridine functional group. The effect of the introduction of pyridine groups into copolymer backbone on the properties of membrane were evaluated through the investigation of membrane parameters. The copolymers produced flexible, tough, and transparent membranes by solvent casting method. All the prepared membranes displayed high thermal stability, great oxidative stability and good mechanical properties. They exhibited appropriate water uptake (15.8–30.2 wt % at 80°C) and remarkable dimensional stability (2.5–6.9% at 80°C). The proton conductivity of SPI‐80 was 1.01 × 10?2 S cm?1 at room temperature. Moreover, the methanol permeability of SPI‐80 membrane was 1.22 × 10?7 cm2 s?1, which was lower than 23.8 × 10?7 cm2 s?1 of Nafion 117. Therefore, these acid‐base polyimides materials have a promising prospect for direct methanol fuel cell applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42238.  相似文献   

12.
A series of phthalonitrile end-capped sulfonated polyarylene ether nitriles are synthesized via K2CO3 mediated nucleophilic aromatic substitution reaction at various molar ratios. The as-prepared polymer structures are confirmed by 1H NMR and FTIR spectroscopy. The properties of membranes cast from the corresponding polymers are investigated with respect to their structures. The membranes exhibit good thermal and mechanical properties, low methanol permeability (0.01?×?10?6–0.58?×?10?6 cm2·s?1 at 20 °C), and high proton conductivity (0.021–0.088 S·cm?1 at 20 °C). The introduction of phthalonitrile is proved to increase intermolecular interaction, mainly contributing to the reduction in water uptake, swelling ratio, and methanol permeability. More importantly, its introduction does not decrease the proton conductivity, but there is a slight increase. Furthermore, the selectivity of SPEN-CN-50 can reach 4.11?×?105 S·s·cm?3, which is about nine times higher than that of Nafion 117. All the data show that the as-prepared membranes may be potential proton exchange membrane for DMFCs applications.  相似文献   

13.
The preparation of sulfonated polybenzimidazole (sPBI) by the grafting of (4‐bromomethyl) benzenesulfonate onto polybenzimidazole (PBI) has been investigated. The methanol permeability and proton conductivity of PBI and sPBI have been studied, and the effects of methanol concentration and temperature on the methanol permeability of PBI and sPBI membranes are discussed. The results showed that the PBI membrane is a good methanol barrier. Methanol permeability in this membrane decreases with increasing methanol concentration and increases with increasing temperature. The temperature‐dependence of methanol permeability of PBI and sPBI membranes is of the ‘Arrhenius type’. Methanol permeation of sPBI is less sensitive to temperature than that of PBI. However, sPBI is a poorer methanol barrier when compared to PBI. Methanol permeability in sPBI membranes increases with increasing methanol concentration and temperature. The proton conductivity of sPBI is 4.69 × 10?4 S cm?1 at room temperature in the hydrated state. The DC conductivity of sPBI–H3PO4 increases with increasing temperature. Proton transport in sPBI–H3PO4 is less sensitive to temperature than that in PBI–H3PO4. Copyright © 2004 Society of Chemical Industry  相似文献   

14.
A crosslinked epoxy [4,4′‐diglycidyl‐(3,3′,5,5′‐tetramethylbiphenyl) epoxy resin (TMBP)], cured by phenol novolac (PN), was introduced into a sulfonated poly(ether ether ketone) (SPEEK) membrane (ion‐exchange capacity = 2.0 mequiv/g) with a casting‐solution, evaporation, and heating crosslinking method to improve the mechanical properties, dimensional stability, water retention, and methanol resistance. By Fourier transform infrared analysis, the interactions between the sulfonic acid groups and hydroxyl groups in the blend membranes were confirmed. The microstructure and morphology of the blend membranes were investigated with atomic force microscopy. As expected, the blend membranes showed excellent mechanical properties, good thermal properties (thermal stability above 200°C), lower swelling ratios (1.4% at 25°C and 7.0% at 80°C), higher water retention (water diffusion coefficient = 9.8 × 10?6 cm2/s), and a lower methanol permeability coefficient (3.6 × 10?8 cm2/s) than the pristine SPEEK membrane. Although the proton conductivity of the blend membranes decreased, a higher selectivity (ratio of the proton conductivity to the methanol permeability) was obtained than that of the pristine SPEEK membrane. The results showed that the SPEEK/TMBP/PN blend membranes could have potential use as proton‐exchange membranes in direct methanol fuel cells. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Proton‐exchange membrane fuel cells (PEMFC)s are increasingly regarded as promising environmentally benign power sources. Heterocyclic molecules are commonly used in the proton conducting membranes as dopant or polymer side group due to their high proton transfer ability. In this study, 5‐(methacrylamido)tetrazole monomer, prepared by the reaction of methacryloyl chloride with 5‐aminotetrazole, was polymerized via conventional free radical mechanism to achieve poly(5‐(methacrylamido)tetrazole) homopolymer. Novel composite membranes, SPSU‐PMTetX, were successfully produced by incorporating sulfonated polysulfone (SPSU) into poly(5‐(methacrylamido)tetrazole) (PMTet). The sulfonation of polysulfone was performed with trimethylsilyl chlorosulfonate and high degree of sulfonation (140%) was obtained. The homopolymers and composite membranes have been characterized by NMR, FTIR, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). 1H‐NMR and FTIR confirmed the sulfonation of PSU and the ionic interaction between sulfonic acid and poly(5‐(methacrylamido)tetrazole) units. TGA showed that the polymer electrolyte membranes are thermally stable up to ~190°C. Scanning electron microscopy analysis indicated the homogeneity of the membranes. This result was also supported by the appearance of a single Tg in the DSC curves of the blends. Water uptake and proton conductivity measurements were, as well, carried out. Methanol permeability measurements showed that the composite membranes have similar methanol permeability values with Nafion 112. The maximum proton conductivity of anhydrous SPSU‐PMTet0.5 at 150°C was determined as 2.2 × 10?6 S cm?1 while in humidified conditions at 20°C a value of 6 × 10?3 S cm?1 was found for SPSU‐PMTet2. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40107.  相似文献   

16.
Polyethersulfone (PES) was sulfonated by chlorosulfonic acid and concentrated sulfuric acid. The pure sulfonated PES (SPES) and modified SPES membranes were prepared by blending with different charged surface modifying macromolecules (cSMMs) namely, SPES/DEG‐HBS, SPES/PEG‐HBS, and SPES/PPG‐HBS. Membranes were characterized for their morphology, physical properties, and electrochemical properties in order to evaluate these membranes as cation exchange membranes. The blended membranes showed an increase in hydrophilicity, water uptake, and proton conductivity compared to the pure SPES membranes. The highest values of water uptake and proton conductivity were obtained for the SPES/PPG‐HBS blended membrane. Morphological studies revealed that the nodule size and surface roughness also influenced the water uptake, apart from the additional –SO3H group. Among the modified membranes, the SPES/DEG‐HBS blended membrane exhibited a lower methanol permeability value of 8.895 × 10−8 cm2 s−1 than the corresponding SPES membrane. The other two cSMM blended membranes showed higher methanol permeability values than SPES but still a smaller value than Nafion 117. The highest selectivity ratio (i.e., ratio of proton conductivity to methanol permeability) was obtained with the SPES/DEG‐HBS cSMM blended membrane. These results showed that the SPES/cSMM blended membranes have promise for possible use as a cation exchange membrane in fuel cells and electrolyzer applications.  相似文献   

17.
Titanate nanotubes (TNTs) about 10 nm in diameter and 200–600 nm in length were hydrothermally synthesized, and then incorporated into a chitosan (CS) matrix to fabricate chitosan/titanate nanotube (CS/TNT) hybrid membranes for a direct methanol fuel cell (DMFC). These hybrid membranes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray powder diffraction (XRD), thermogravimetry (TG), and positron annihilation lifetime spectroscopy (PALS). Moreover, their performances, including mechanical strength, water and methanol uptake, methanol permeability, and proton conductivity were determined. SEM results demonstrated that TNTs dispersed homogeneously in the hybrid membranes. Mechanical strength and TG measurements demonstrated that the mechanical and thermal stability of CS/TNT hybrid membranes were much higher than those of pure chitosan membranes. PALS analysis revealed that the fractional free volume (FFV) of CS/TNT hybrid membranes increased with the incorporation of TNTs and, thus, resulting in the reduction of methanol crossover. In all as‐prepared membranes, the hybrid membrane containing 15 wt % TNTs exhibited the highest mechanical strength of 85.0 MPa, low methanol permeability of 0.497 · 10–6 cm2·s–1, and proton conductivity of 0.0151 S·cm–1, which had the potential for DMFC applications.  相似文献   

18.
Natural polyelectrolyte chitosan (CS) has been considered to be a promising proton‐exchange membrane material for direct methanol fuel cells due to its low cost and excellent methanol barrier ability. To further improve the ionic conductivity and mechanical property of CS, calcium‐carbonate solvent‐free nanofluids (CaCO3‐SF) with unique flow behavior were prepared by an ion‐exchange method, and then used a novel nanofiller to modify CS to fabricate composite membranes. The surface‐grafted organic long chains on the surface of CaCO3 nanoparticles could promote the homogeneous dispersion of CaCO3 in the CS matrix, and thus improve the interfacial bonding and facilitate the load transfer from the matrix to stiff CaCO3. When the content of CaCO3‐SF was 6 wt%, the tensile strength and fracture elongation of the composite membrane were 28.25 MPa and 17.17%, respectively, which increased by 25% and 36% when compared with those of pure membrane. Moreover, the ? SO3H groups in the structure of organic long chains could form new proton transport sites, and thus enhance the proton conductivity of the membranes. Consequently, when compared with pure CS membrane (0.0131 S cm?1), incorporation of 6 wt% CaCO3‐SF (0.0250 S cm?1) exhibited about onefold increase of proton conductivity. POLYM. ENG. SCI., 59:2128–2135, 2019. © 2019 Society of Plastics Engineers  相似文献   

19.
Novel bisphenol A‐based sulfonated poly(arylene ether sulfone) (bi A‐SPAES) copolymers were successfully synthesized via direct copolymerization of disodium 3,3′‐disulfonate‐4,4′‐dichlorodiphenylsulfone, 4,4′‐dichlorodiphenylsulfone, and bisphenol A. The copolymer structure was confirmed by Fourier transform infrared spectra and 1H NMR analysis. The series of sulfonated copolymers based membranes were prepared and evaluated for proton exchange membranes (PEM). The membranes showed good thermal stability and mechanical property. Transmission electron microscopy was used to obtain the microstructures of the synthesized polymers. The membranes exhibit increased water uptake from 8% to 66%, ion exchange capacities from 0.41 to 2.18 meq/g and proton conductivities (25°C) from 0.012 to 0.102 S/cm with the degree of sulfonation increasing. The proton conductivities of bi A‐SPAES‐6 membrane (0.10–0.15 S/cm) with high‐sulfonated degree are higher than that of Nafion 117 membrane (0.095–0.117 S/cm) at all temperatures (20–100°C). Especially, the methanol diffusion coefficients of membranes (1.7 × 10?8 cm2/s–8.5 × 10?7 cm2/s) are much lower than that of Nafion 117 membrane (2.1 × 10?6 cm2/s). The new synthesized copolymer was therefore proposed as a candidate of material for PEM in direct methanol fuel cell. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Polymer electrolyte blend membranes composed of sulfonated block‐graft polyimide (S‐bg‐PI) and sulfonated polybenzimidazole (sPBI) were prepared and characterized. The proton conductivity and oxygen permeability coefficient of the novel blend membrane S‐bg‐PI/sPBI (7 wt%) were 0.38 S cm?1 at 90 °C and 98% relative humidity and 7.2 × 10?13 cm3(STP) cm (cm2 s cmHg)?1 at 35 °C and 76 cmHg, respectively, while those of Nafion® were 0.15 S cm?1 and 1.1 × 10?10 cm3(STP) cm (cm2 s cmHg)?1 under the same conditions. The apparent (proton/oxygen transport) selectivity calculated from the proton conductivity and the oxygen permeability coefficient in the S‐bg‐PI/sPBI (7 wt%) membrane was 300 times larger than that determined in the Nafion membrane. Besides, the excellent gas barrier properties based on an acid ? base interaction in the blend membranes are expected to suppress the generation of hydrogen peroxide and reactive oxygen species, which will degrade fuel cells during operation. The excellent proton conductivity and gas barrier properties of the novel membranes promise their application for future fuel cell membranes. © 2015 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号