首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ductile–brittle transition temperatures were determined for compatibilized nylon 6/acrylonitrile‐butadiene‐styrene (PA6/ABS) copolymer blends. The compatibilizers used for those blends were methyl methacrylate‐co‐maleic anhydride (MMA‐MAH) and MMA‐co‐glycidyl methacrylate (MMA‐GMA). The ductile–brittle transition temperatures were found to be lower for blends compatibilized through maleate modified acrylic polymers. At room temperature, the PA6/ABS binary blend was essentially brittle whereas the ternary blends with MMA‐MAH compatibilizer were supertough and showed a ductile–brittle transition temperature at ?10°C. The blends compatibilized with maleated copolymer exhibited impact strengths of up to 800 J/m. However, the blends compatibilized with MMA‐GMA showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2643–2647, 2003  相似文献   

2.
Mechanical properties of polycarbonates (PCs) and elastomer-modified polycarbonates with various molecular weights (MW) are investigated. Higher MW PCs show slightly lower density, yield stress, and modulus. The ductile–brittle transition temperature (DBTT) of the notched impact strength decreases with the increase of PC MW and with the increase of elastomer content. The elastomer-modified PC has higher impact strength than does the unmodified counterpart if the failure is in the brittle mode, but has lower impact strength if the failure is in the ductile mode. The critical strain energy release rate (Gc) measured at ?30°C decreases with the decrease of PC MW. The extrapolated zero fracture energy was found at Mn = 6800 or MFR = 135. The Gc of the elastomer-modified PC (MFR = 15, 5% elastomer) is about twice that of thee unmodified one. The presence of elastomer in the PC matrix promotes the plane–strain localized shear yielding to greater extents and thus increases the impact strength and Gc in a typically brittle fracture. Two separate modes, localized and mass shear yielding, work simultaneously in the elastomer-toughening mechanism. The plane–strain localized shear yielding dominates the toughening mechanism at lower temperatures and brittle failure, while the plane–stress mass shear yielding dominates at higher temperatures and ductile failure. For the elastomer-modified PC (10% elastomer), the estimated extension ratio of the yielding zone of the fractured surface is 2 for the ductile failure and 5 for the brittle crack. A criterion for shifting from brittle to ductile failure based on precrack critical plastic-zone volume is proposed.  相似文献   

3.
Nylon-6 is widely used as engineering plastic because it is easy to process, high tensile properties, resistant to chemical and abrasion. However, poor impact strength at low temperature makes it limitedly used in some applications. Nylon-6/liquid natural rubber (LNR) blends were prepared via emulsion dispersion with composition of 100nylon-6/0LNR, 95nylon-6/5LNR, 90nylon-6/10LNR, 85nylon-6/15LNR, 80nylon-6/20LNR and 75nylon-6/25LNR. Nylon-6 was dissolved in a 2,2,2-trifluoroethanol and chloroform mixture (1:1 TFE/CHCl3) and emulsified with hexadecyltrimethylammonium bromide (HTAB). LNR was dispersed into the nylon-6 emulsion to form homogeneous nylon-6/LNR emulsions and the emulsions were de-emulsified with methanol, filtered and dried. High impact behaviour was achieved at 85nylon-6/15LNR composition. DSC thermogram indicated a single glass transition temperature, T g and SEM images showed no phase separation between blend components implying homogeneous blends were obtained.  相似文献   

4.
The effect of chlorinated polyethylene (CPE) content and test temperature on the notched Izod impact strength and brittle‐ductile transition behaviors for polyvinylchloride (PVC)/CPE blends and PVC/CPE/nano‐CaCO3 ternary composites is studied. The CPE content and the test temperature regions are from 0–50 phr and 243–363 K, respectively. It is found that the optimum nano‐CaCO3 content is 15 phr for PVC/CPE/nano‐CaCO3 ternary composites. For both PVC/CPE blends and PVC/CPE/nano‐CaCO3 ternary composites, the impact strength is improved remarkably when the CPE content or test temperature is higher than the critical value, that is, brittle‐ductile transition content (CBD) or brittle‐ductile transition temperature (TBD). The TBD is closely related to the CPE content, the higher the CPE content, the lower the TBD. The temperature dependence of impact strength for PVC/CPE blends and PVC/CPE/nano‐CaCO3 ternary composites can be well simulated with a logistic fitting model, and the simulation results can be illustrated with the percolation model proposed by Wu and Jiang. DMA results reveal that both PVC and CPE can affect the TBD of PVC/CPE blends and PVC/CPE/nano‐CaCO3 composites. When the CPE content is enough (20 phr), the CPE is more important than PVC for determining the TBD of PVC/CPE blends and PVC/CPE/nano‐CaCO3 composites. Scanning electron microscopy (SEM) observations reveal that the impact fractured mechanism can change from brittle to ductile with increasing test temperature for these PVC systems. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PMMPO) and poly(4-methylstyrene) (P4MS) were found to be compatible from a variety of experimental methods including calorimetric, density, and mechanical property measurements. Blend property behavior was similar to that widely reported for PMMPO/polystyrene (PS) blends. For each blend composition studied, a single glass transition temperature (Tg) was detected by differential scanning calorimetry. The compositional dependence of blend Tg was equally well represented by the empirical inverse rule of mixtures or by the Couchman thermodynamic expression. Density measurements of molded films suggested a mild excess volume of mixing that was slightly smaller than that observed for blends of PMMPO and PS. As in the case for PMMPO/PS, densification in the solid state may be associated with the observed mechanical property behavior of the PMMPO/P4MS blends. Initial modulus at each blend composition was larger than would be predicted by a simple weighted average of component polymer values. Tensile deformation changed from a ductile to a brittle mode of failure with increasing P4MS composition. The yield stress for ductile compositions and ultimate stress of brittle samples were both higher than found for the corresponding unblended polymers and higher than would be predicted from a simple additive relationship of weighted component properties. Blend impact strength determined by small strain rate tensile tests rapidly decreased to low levels with increasing P4MS composition. This drop in impact strength became more composition sensitive at higher loading rates during multiaxial deformation in an instrumented dart impact tester.  相似文献   

6.
The aim of this work is to investigate the effects of two triblock copolymers, used as coupling agents, on fracture and yielding behaviors of a blend of 80 volume % of polystyrene (PS) and 20 volume %of ethylene‐propylene rubber (EPR), over a large range of loading rates and temperatures. For this purpose, blends containing different concentrations of two triiblock copolymers were studied at various test conditions. The focus was put on the time‐temperature dependence of fracture performance of the blends. Addition of triblock copolymer makes the PS/EPR blend more ductile. The time‐temperature dependence of the brittle‐ductile transition in fracture performance of the blend is controlled by an energy activation process. The interfacial agent lowers the temperature at brittle‐ductile transition and reduces the energy barrier controlling the fracture process. This effect, however, is much more pronounced for the lower molecular weight interfacial agent. The correlation between temperature, loading rate and yield stress of the blends seems to be controlled by a molecular relaxation process according to the Ree‐Eyring theory. This model, based on the assumption of two relaxation processes (α and β) acting in parallel, allows prediction of yield stress at various loading rates and temperatures. Addition of the interfacial agents results in a reduction of the activation energy and an increase in the activation volume V* for both the α and β processes. Furthermore, the similarity of the value of the activation energy ΔHβ in the β yielding process and the energy barrier ΔH controlling the brittle‐ductile transition in fracture seems to suggest that a similar secondary relaxation mechanism controls the yielding and the fracture behavior of the blend.  相似文献   

7.
In the elastomer‐modified (polyamide‐6/poly(phenylene ether) (PA6/PPE) = 50/50 blends, poly(styrene‐co‐maleic anhydride) (SMA) was demonstrated to be an efficient reactive compatibilizer. The G1651 elastomer was shown to be an effective impact modifier to result in superior toughness and heat‐deflection temperature (HDT) than is the 1901X elastomer for the SMA‐compatibilized blends because G1651 particles exclusively reside within the dispersed PPE phase but 1901X particles tend to distribute in the PA6 matrix and/or along the interface. The apparent average diameter of the dispersed PPE phase is insignificantly dependent on the elastomer content in the G1651‐modified blend, whereas it increases with increase of the elastomer content in the 1901X‐modified blend. Moreover, there exists a critical elastomer content, 15 phr, for the ductile–brittle transition of the G1651‐modified SMA‐modified PA6/PPE blends. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 23–32, 1999  相似文献   

8.
The effects of boiling water on the mechanical and thermal properties and morphologies of polycarbonate (PC), PC/acrylonitrile–butadiene–styrene resin (PC/ABS), and PC/low‐density polyester (PC/LDPE) blends (compositions of PC/ABS and PC/LDPE blends were 80/20) were studied. PC and the PC/ABS blend had a transition from ductile to brittle materials after boiling water aging. The PC/LDPE blend was more resistant to boiling water aging than PC and the PC/ABS blend. The thermal properties of glass‐transition temperature (Tg) and melting temperature (Tm) in PC and the blends were measured by DSC. The Tg of PC and PC in the PC/ABS and PC/LDPE blends decreased after aging. The Tg of the ABS component in the PC/ABS blend did not change after aging. The supersaturated water in PC clustered around impurities or air bubbles leading to the formation of microcracks, which was the primary reason for the ductile–brittle transition in PC, and the microcracks could not recover after PC was treated at 160°C for 6 h. The PC/ABS blend showed slightly higher resistance to boiling water than did PC. The highest resistance to boiling water of the PC/LDPE blend may be attributed to its special structural morphology. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 589–595, 2003  相似文献   

9.
Carbon nanotubes with different functional groups were prepared and then incorporated into the poly(2,6‐dimethyl‐1,4‐phenylene oxide)/polyamide 6 (PPO/PA6) blend via melt blending. The influence of different carbon nanotubes on the morphology and properties of the blend was studied. The results show that addition of pristine CNTs, CNTs‐OH, CNTs‐NH2 leads to the evolution of the phase structure of PPO/PA6 (mass ratio: 60/40) blend from sea‐island to cocontinuous, whereas incorporation of CNTs‐COOH does not change the blend morphology due to serious aggregation of the carbon nanotubes. Incorporating different CNTs into PPO/PA6 blend increases the tensile modulus and storage modulus of the blends, whereas decreases slightly the tensile strength. At the same time, the glass transition temperatures (Tg) of PA6 and PPO are enhanced. ΔTg, the gap between the Tg of PA6 and PPO, decreases with the addition of carbon nanotubes due to the stronger interaction of carbon nanotubes with PA6 than PPO. A similar tendency was found in the storage modulus (G′) and complex viscosity (η*) of the composites. The dispersion state of different carbon nanotubes and their interaction with polymer components are different, which causes the different confinement effect to the macromolecular chains. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
The effects of multiple injection molding cycles on the chemical and mechanical properties of PA6/ABS and PA6/PA66/ABS blends are investigated. The chemical structures of both PA6/ABS binary and PA6/PA66/ABS ternary blends do not alter after recycling process. For PA6/ABS binary blend, it is found that the tensile strength, strain at break, elastic modulus, impact strength, flexural strength, and modulus of recycled blend decrease by 6.49%, 15.19%, 21.00%, 9.41%, 7.09%, and 8.25%, respectively, while MFI increases by 23.59% as compared with the virgin blend. After five recycling process for PA6/PA66/ABS ternary blend, the tensile strength, strain at break, and impact strength of recycled blend decrease by 18.00%, 50.80%, and 87.27%, respectively. However, flexural strength and modulus of PA6/PA66/ABS blend increase slightly. For virgin PA6/PA66/ABS blend, MFI value was 7.7 g/10 min and with recycling this value showed an important increase to 31.56 g/10 min after five cycles. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40810.  相似文献   

11.
The fracture and yield strength of polyetherimide was evaluated over a temperature range of 23 to 140°C for materials with number‐average (Mn) and weight‐average molecular weight (Mw) ranging from 15.6 to 22.8 and 36.6 to 52.3 kg/mol, respectively. The brittle‐to‐ductile transition temperature, where an equal probability exists that an impact will result in a brittle or ductile failure, was determined by evaluating the temperature at which fracture and yield strength are equal. The transition temperature decreased from 155 to 60°C with increasing molecular weight and provided a measure of relative ductility between material samples. As a case study, the practical impact strength of an injection‐molded food service tray was determined at 20°C and correlated with fracture strength as a function of molecular weight. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1666–1671, 2004  相似文献   

12.
High‐performance biosourced poly(l ‐lactide) (PLLA)/polyamide 11 (PA11) (55/45) blends with small amounts of rubber, ethylene glycidyl methacrylate‐graft‐styrene‐co‐acrylonitrile (EGMA‐g‐AS), were fabricated by simple melt compounding. Epoxide groups in EGMA‐g‐AS are ready to react with both PA11 and PLLA, and thus EGMA‐g‐AS could be manipulated to locate mainly in either PA11 phase or PLLA phase by variation of the blending sequence. It was found that the blend with salami structure in which EGMA‐g‐AS is predominantly dispersed in the PLLA phase provides not only significantly improved tensile ductility, but also excellent film impact strength, while keeping relatively high modulus. The elongation at break and the film impact strength of such materials with 6 phr EGMA‐g‐AS are 322% and 361 kJ m?2, which are 78 and 5.2 times those of unmodified PLLA, respectively. In contrast, the blends with EGMA‐g‐AS mainly in the PA11 phase fracture in a brittle mode with low toughness. The toughening mechanism of the PLLA/PA11 blends with the sub‐inclusion salami structure was investigated using a double‐notch technique. The brittle‐to‐tough transition was observed on increasing the rubber sub‐inclusion concentration in the PLLA phase. © 2013 Society of Chemical Industry  相似文献   

13.
研究了固定PP/HDPE/SBS三元共混物配比,采用不同共混工艺条件下的脆-韧转变规律。研究表明:PP三元共混物的冲击强度与SBS分散相粒径有密切关系。当SBS分散相粒间距T等于临界值T_c时,PP三元共混物将发生脆-韧转变。研究还表明基体韧性与T_c有密切关系,当基体韧性增高时,T_c值将增大。  相似文献   

14.
Liquid natural rubber of different molecular masses L‐LNR, and H‐LNR were subjected to varying degree of epoxidation (L‐ELNR‐10, L‐ELNR‐20, L‐ELNR‐30, L‐ELNR‐40, L‐ELNR‐50, H‐LNR‐20, and H‐LNR‐50) and the products were incorporated into PVC at various compositions by the solution blending method. These blend systems were subjected to tensile testing, tensile impact measurements, and SEM studies. It was observed that blends with L‐ELNR‐20 showed highest impact strength modification, followed by L‐ELNR‐10 and L‐ELNR‐30. High impact properties showed by these blends are attributed to the optimum level of compatibility existing between the blend components. Tensile impact fracture studies revealed that the failure pattern for this blend system is intermediate between the brittle fracture of rigid PVC and ductile fracture of PVC/L‐ELNR‐50 samples. Blends up to 30 mol % of epoxidation showed partially compatible heterogeneous nature exhibiting domain morphology. Blends of liquid rubber with higher degree of epoxidation showed deterioration in tensile strength, modulus, yield strength, and tensile impact strength due to plasticization of PVC caused by the higher polar interaction between PVC chains and the oxirane rings. Effect of ELNR molecular weight was studied and it is found that the impact modification is higher for the L‐ELNR blends compared to the H‐ELNR blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Metal‐polymer composites based on polyethylene (PE), polyoxymethylene (POM), polyamide (PA) and a PE/POM blend as matrix and dispersed iron (Fe) as filler have been prepared by extrusion of the appropriate mechanical mixtures, and their electrical conductivity, dielectric properties and thermal conductivity have been investigated. The filler spatial distribution is random in the PE‐Fe, POM‐Fe and PA‐Fe composites. In the PE/POM‐Fe composite the polymer matrix is two‐phase and the filler is contained only in the POM phase, resulting in an ordered distribution of dispersed Fe in the volume of polymer blend. The transition through the percolation threshold ?c is accompanied by a sharp increase of the values of conductivity σ, dielectric constant ε′ and dielectric loss tangent tan δ. The critical indexes of the equations of the percolation theory are close to the theoretical ones in the PE‐Fe and POM‐Fe composites, whereas they take unusually high values in the PE/POMFe composite. Thus, t in the equation σ ~ (φ – φc)t is 2.9–3.0 in the systems characterized by random distribution of dispersed filler and 8.0 in the PE/POM‐Fe system. The percolation threshold φc depends on the kind of polymer matrix, becoming 0.21, 0.24, 0.29 and 0.09 for the composites based on PE, POM, PA and PE/POM, respectively. Also the thermal parameters of the PE/POM‐Fe composite are different from those of all other composites. A model explaining the unusual electrical characteristics of the composite based on the polymer blend (PE/POM‐Fe) is proposed, in agreement with the results of optical microscopy.  相似文献   

16.
Maleic anhydride (MAH) grafted onto ethylene vinyl acetate copolymer (EVA), mEVA (modified EVA) was blended with poly(ethylene glycol‐co‐cyclohexane‐1,4‐dimethanol terephthalate) (PETG) with various mEVA and EVA (unmodified) content in the internal mixer. The effect of reactive compatibilizer to decrease the dispersed particle diameter was observed. The brittle–ductile transition was found at about dn: 0.37 µm and dv: 0.55 µm of particle diameter, a critical particle diameter, regardless of EVA content, and the blend was also toughened at above the critical particle diameter regardless of dispersed EVA content and compatibility. The toughening mechanism and the effect of the particle diameter on the impact strength of the blend were investigated by morphological observation, and it was found that the toughening of the PETG/EVA blend system resulted from the shear deformation, induced by cavitation of dispersed EVA particles. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Polymer blends typically are the most economical means to develop new resins for specific applications with the best cost/performance balance. In this paper, the mechanical properties, melting, glass transition, and crystallization behavoir of 80 phr polypropylene (PP) with varying weights of linear low density polyethylene (LLDPE) at 10, 20/ 20 wt % CaCO3, 30, 40, and 50 phr were studied. A variety of physical properties such as tensile strength, impact strength, and flexural strength of these blends were evaluated. The compatibility of these composite was examined by differential scanning calorimetry (DSC) to estimate Tm and Tc, and by dynamic mechanical analysis (DMA) to estimate Tg. The fractographic analysis of these blends was examined by scanning electron microscopy (SEM). It has been confirmed that increasing the LLDPE content trends to decreases the tensile strength and flexural strength. However, increasing the LLDPE content led to increases in the impact strength of PP/LLDPE blends. It was also found that up to 40 phr the corresponding melting point (Tm) was not effected with increasing LLDPE content. Each compound has more than one Tg, which was informed that there is a brittle‐ductile transition in fracture nature of these blends, the amount of material plastically deformed on the failure surface seems to increase with the increasing the LLDPE content. And PP/LLDPE blends at temperature (23°C) showed a ductile fracture mode characterized by the co‐existence of a shear yielding process; whereas at lower temperature (−20°C) the fractured surfaces of specimens appear completely brittle. The specimens broke into two pieces with no evidence of stress whitening, permanent macroscopic deformation or yielding. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
The essential work of fracture (EWF) method has aroused great interest and has been used to characterize the fracture toughness for a range of ductile metals, polymers and composites. In the plastics industry, for purposes of practical design and ranking of candidate materials, it is important to evaluate the impact essential work of fracture at high‐rate testing of polymers and polymer blends. In this paper, the EWF method has been utilized to determine the high‐rate specific essential fracture work, we, for elastomer‐modified PA6/PPE/SMA (50/50/5) blends by notched Charpy tests. It is found that we increases with testing temperature and elastomer content for a given specimen thickness. Morphologically, there are two failure mechanisms: shear yielding and pullout of second phase dispersed particles. Shear yielding is dominant in ductile fracture, whereas particle pullout is predominant in brittle fracture.  相似文献   

19.
In this article, sulfonated ethylene‐propylene‐diene monomer terpolymer (H–SEPDM) was used to treat CaCO3 particles. CaCO3 particles are encapsulated by H–SEPDM through the reaction of sulfonic acid group (? SO3H) in H–SEPDM with CaCO3 to improve the interface adhesion of CaCO3 with HDPE. In case the treated CaCO3 is blended with HDPE, a brittle–ductile transition occurs. The impact strength of the blend rises sharply at 25–30 wt % CaCO3, and amounts to more than 700 J/m, four times as high as that of HDPE at 30 wt % CaCO3, without much loss of its yield strength and modulus. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2140–2144, 2001  相似文献   

20.
High‐density polyethylene (HDPE) was blended with “reinforcing” cycloolefin copolymer (COC) in order to produce polyolefin materials with increased stiffness, yield and tensile strength. Experimental data on tensile modulus Eb, creep modulus Ebcr, storage modulus Eb′, loss modulus Eb″, yield strength Syb, and tensile strength Sub of blends are in plausible accord with their simultaneous prediction based on a predictive format that operates with a two‐parameter equivalent box model and the data on the phase continuity of components obtained from modified equations of the percolation theory. Dependencies of these mechanical properties on blend composition indicate the critical volume fraction v2cr = 0.16 of COC. Interfacial adhesion in the HDPE/COC blends is strong enough to transmit acting stress up to the break point. Strain at break, tensile energy to break and tensile impact strength show conspicuous drops in the interval 15–25% of COC in the blends, during which COC starts to form a co‐continuous brittle component. Further growth of COC fraction accounts for reduction of blend ultimate properties to values typical of brittle polymers. However, tensile impact strength shows a local maximum at HDPE/COC = 25/75, which probably corresponds to COC toughened with HDPE particles. POLYM. ENG. SCI. 45:817–826, 2005. © 2005 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号