首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The toughness of cycloaliphatic epoxy resin 3,4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexane carboxylate (ERL‐4221) has been improved by using multiwalled carbon nanotubes (MWCNTs) treated by mixed acids. The MWCNT/ERL‐4221 composites were characterized by Raman spectroscopy and their mechanical properties were investigated. A significant increase in the tensile strength of the composite from 31.9 to 55.9 MPa was obtained by adding only 0.05 wt % of MWCNTs. And a loading of 0.5 wt % MWCNTs resulted in an optimum tensile strength and cracking energy, 62.0 MPa and 490 N cm, respectively. Investigation on the morphology of fracture surface of the composites by field emission scanning electron microscopy demonstrated the crack pinning‐front bowing and bridging mechanisms of toughening. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
A phosphorus‐containing epoxy resin, 6‐H‐dibenz[c,e][1,2] oxaphosphorin‐6‐[2,5‐bis(oxiranylmethoxy)phenyl]‐6‐oxide (DOPO epoxy resin), was synthesized and cured with phenolic novolac (Ph Nov), 4,4′‐diaminodiphenylsulfone (DDS), or dicyandiamide (DICY). The reactivity of these three curing agents toward DOPO epoxy resin was found in the order of DICY > DDS > Ph Nov. Thermal stability and the weight loss behavior of the cured polymers were studied by TGA. The phosphorus‐containing epoxy resin showed lower weight loss temperature and higher char yield than that of bisphenol‐A based epoxy resin. The high char yields and limiting oxygen index (LOI) values as well as excellent UL‐94 vertical burn test results of DOPO epoxy resin indicated the flame‐retardant effectiveness of phosphorus‐containing epoxy resins. The DOPO epoxy resin was investigated as a reactive flame‐retardant additive in an electronic encapsulation application. Owing to the rigid structure of DOPO and the pendant P group, the resulting phosphorus‐containing encapsulant exhibited better flame retardancy, higher glass transition temperature, and thermal stability than the regular encapsulant containing a brominated epoxy resin. High LOI value and UL‐94 V‐0 rating could be achieved with a phosphorus content of as low as 1.03% (comparable to bromine content of 7.24%) in the cured epoxy, and no fume and toxic gas emission were observed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 353–361, 1999  相似文献   

3.
(η6‐Carbazole)(η5‐cyclopentadienyl) iron hexafluorophosphate salts (CFS PF6) are capable of photoinitiating cationic polymerization of epoxy monomers directly upon irradiation with long‐wavelength UV light. To improve the solubility of CFS ferrocenium salts in epoxides, two CFS photoinitiators have been prepared: [cyclopentadiene‐Fe‐N‐buylcarbazole] hexafluorophosphate (C4‐CFS PF6) and [cyclopentadiene‐Fe‐N‐octylcarbazole] hexafluorophosphate (C8‐CFS PF6), bearing C4 and C8 alkyl chains, respectively, on the nitrogen atom. Studies with real‐time infrared spectroscopy have shown that C4‐CFS and C8‐CFS photoinitiators exhibit high efficiency in polymerization of 3,4‐epoxycyclohexylmethyl‐3,4‐epoxycyclohexane carboxylate (ERL‐4221) epoxy monomer, but lower efficiency in polymerization of di(2,3‐epoxypropyl)‐3,4‐epoxy‐1,2‐cyclohexanedioate (TDE‐85) epoxy monomer. Benzoyl peroxide (BPO) sensitizer was very effective in improving the photoinitiating activities of CFS in polymerization of both ERL‐4221 and TDE‐85. DSC studies have shown that C4‐CFS and C8‐CFS photoinitiators can also be employed as thermal initiators for the cationic ring‐opening polymerization of epoxides at moderate temperatures. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

4.
The combination of gas‐phase and condensed‐phase action will contribute to high quality flame retardant. A novel 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO)‐based flame retardant (DOPO‐DOPC), which contains carbon source was synthesized in favor of conducting the effect of gas‐phase as well as promoting the char formation in condensed‐phase. The chemical structure of DOPO‐DOPC was characterized by nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR). DOPO–DOPC was used as an additive in poly(ethylene terephthalate) (PET) and epoxy resin (EP). The flame retardancy of PET/DOPO‐DOPC and EP/DOPO‐DOPC composites were studied by limiting oxygen index (LOI) and UL‐94 test. The results showed that the incorporation of DOPO–DOPC into PET or EP could obviously improve their flame retardancy. The LOI values of modified PET or EP, which contained 10 wt % DOPO‐DOPC reached 42.8 and 31.7%, respectively. The thermogravimetric analysis (TGA) results revealed that DOPO–DOPC enhanced the formation of char residues. The Laser Raman spectroscopy (LRS) was used to investigate the carbon structure of thermal oxidation residues. Because of the combination of the gas phase flame retardant effect of DOPO moiety and the promoting formation of char residues in condensed phase, the PET and EP composites exhibited significant improvement toward flame retardancy. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44639.  相似文献   

5.
A liquid silicon/phosphorus containing flame retardant (DOPO–TVS) was synthesized with 9,10‐dihydro‐9‐oxa‐10‐phosphapheanthrene‐10‐oxid (DOPO) and triethoxyvinylsilane (TVS). Meanwhile, a modified epoxy resin (IPTS–EP) was prepared by grafting isocyanate propyl triethoxysilane (IPTS) to the side chain of bisphenol A epoxy resin (EP) through radical polymerization. Finally, the flame retardant (DOPO–TVS) was incorporated into the modified epoxy resin (IPTS–EP) through sol–gel reaction between the ethyoxyl of the two intermediates to obtain the silicon/phosphorus containing epoxy resin. The molecular structures of DOPO–TVS, IPTS–EP and the final modified epoxy resin were confirmed by FTIR spectra and 1H‐NMR, 31P‐NMR. Thermogravimetric analysis (TGA), differential scanning calorimetry, and limiting oxygen index were conducted to explore the thermal properties and flame retardancy of the synthesized epoxy resin. The thermal behavior and flame retardancy were improved. After heating to 600°C in a tube furnace, the char residue of the modified resin containing 10 wt % DOPO–TVS displayed more stable feature compared to that of pure EP, which was observed both by visual inspection and scanning electron microscope (SEM). Moreover, the mechanical performance testing results exhibited the modified epoxy resins possessed elevated tensile properties and fracture toughness which is supported by SEM observation of the tensile fracture section. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42788.  相似文献   

6.
无卤阻燃含磷环氧树脂的研究进展   总被引:1,自引:0,他引:1  
无卤阻燃含磷环氧树脂中的磷成分具有气相和凝聚相的双重阻燃作用,且材料本身降解产物不产生可持续性环境污染物,因而作为环境友好型阻燃材料而被广泛研究。本文综述了近年来关于含9,10-二氢-9-氧杂-10-磷杂菲10-氧化物(DOPO)环氧树脂体系(包含DOPO环氧树脂、DOPO基固化剂和添加型DOPO改性聚合物)、磷酸酯型环氧树脂体系(包括磷酸酯环氧树脂、环状磷酸酯环氧树脂、磷酸酯型固化剂)、含磷固化剂以及磷腈环氧树脂和磷-硅环氧树脂的研究进展,介绍了每种体系的性能特点。总结了含磷环氧树脂的阻燃性能、热性能、阻燃机理,以及磷-氮协同效应、磷-硅复合二元体系的阻燃机理。  相似文献   

7.
Novel epoxy resin modifiers, DOPO–TMDS and DOPO–DMDP were synthesized by addition reaction of divinylsiloxane with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO). Halogen-free flame retardant epoxy resins were obtained through modification of o-cresol novolac epoxy resin cured by phenol novolac resin using DOPO–TMDS and DOPO–DMDP which were characterized by 1H NMR, 13C NMR, 31P NMR and FT-IR measurements. Effects of the phosphorus-containing siloxanes on thermal stabilities, mechanical properties and flame retardant properties of the epoxy resins were investigated. The cured epoxy resins exhibited better mechanical properties and greatly improved flame retardant properties due to the presence of phosphorus-containing siloxanes. The cured epoxy resins with phosphorus loading of 2.0 wt% showed LOI values of 32–33 and achieved UL94V-0 ratings.  相似文献   

8.
To obtain a more efficient flame‐retardant system, the extra‐triazine‐rich compound melamine cyanurate (MCA) was coworked with tri(3‐9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide‐2‐hydroxypropan‐1‐yl)?1,3,5‐triazine‐2,4,6‐trione (TGIC–DOPO) in epoxy thermosets; these were composed of diglycidyl ether of bisphenol A (DGEBA) epoxy resin and 4,4′‐diaminodiphenyl methane (DDM). The flame‐retardant properties were investigated by limited oxygen index measurement, vertical burning testing, and cone calorimeter testing. In contrast to the DGEBA/DDM (EP for short) thermoset with a single TGIC–DOPO, a better flame retardancy was obtained with TGIC–DOPO/MCA/EP. The 3% TGIC–DOPO/2% MCA/EP thermoset showed a lower peak heat‐release rate value, a lower effective heat of combustion value, fewer total smoke products, and lower total yields of carbon monoxide and carbon dioxide in comparison with 3% TGIC–DOPO/EP. The results reveal that MCA and TGIC–DOPO worked jointly in flame‐retardant thermosets. The dilution effect of MCA, the quenching effect of TGIC–DOPO, and their joint action inhibited the combustion intensity and imposed a better flame‐retardant effect in the gas phase. The 3% TGIC–DOPO/2% MCA/EP thermoset also exhibited an increased residue yield, and more compositions with triazine rings were locked in the residues; this implied that MCA/TGIC–DOPO worked jointly in the condensed phase and promoted thermoset charring. The results reveal the better flame‐retardant effect of the MCA/TGIC–DOPO system in the condensed phase. Therefore, the joint incorporation of MCA and TGIC–DOPO into the EP thermosets increased the flame‐retardant effects in both the condensed and gas phases during combustion. This implied that the adjustment to the group ratio in the flame‐retardant group system endowed the EP thermoset with better flame retardancy. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43241.  相似文献   

9.
Phosphorous flame retardants (PFRs) are common halogen‐free flame retardants. However, the flame retardancy of PFRs has not been fully exploited. Herein, the synergistic flame retardant effect of a typical phosphorous compound, 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO), and organoclay on epoxy is studied. Results show that the peak of heat release rate (pHRR) and smoke production rate of modified epoxy resin (EP) with both 2.0 wt % phosphorus and 4.0 wt % organoclay are only 40% and 46% of that of neat EP resin, respectively, while the sole use of 2.0 wt % phosphorus only decrease the pHRR to 59% of that of neat EP resin. The structure and thermal decomposition behavior of as‐prepared nanocomposites are analyzed, and a synergistic flame retardant mechanism is proposed. This investigation opens a new approach to obtain halogen‐free EPs with higher flame retardancy and better overall properties than the EPs loaded with DOPO only. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43367.  相似文献   

10.
A novel and highly effective flame retardant (FR), DOPO‐TPMP oligomer, was synthesized by a simple condensation of 4‐(hydroxymethyl)‐2,6,7‐trioxa‐1‐phosphabicyclo[2.2.2]octane‐1‐oxide and phosphorus oxychloride followed by a polycondensation reaction with 6‐(2,5‐dihydroxyphenyl)‐6H‐dibenzo[c,e][1,2]oxaphosphinine‐6‐oxide. The chemical structure of DOPO‐TPMP was well characterized using Fourier transform infrared and NMR spectra. DOPO‐TPMP was used as an additive‐type FR for epoxy resin (EP). The FR properties of the resultant EP composites were investigated by limiting oxygen index (LOI) test, UL‐94 vertical burning test and cone calorimeter measurements. Specifically, the EP composite containing 10.0% DOPO‐TPMP achieved a LOI value of 36.1%, V‐0 rating in the UL‐94 test and a 58% reduction in peak heat release rate. Further mechanism analysis attributed the enhanced flame retardancy to the increased char yield on the addition of DOPO‐TPMP. © 2019 Society of Chemical Industry  相似文献   

11.
研究了不同填充量的反应型和添加型含磷阻燃剂对阻燃环氧树脂力学性能和阻燃性能的影响,并对比研究了2种类型阻燃环氧树脂的热稳定性。结果表明,反应型阻燃剂中9,10-二氢-9-氧-10-磷杂菲-10-氧化物(DOPO)阻燃环氧树脂的力学性能和阻燃性能好于6-氢-二苯并[c,e][1,2]氧磷酰杂-6-甲醇,6-氧化物(DOPO-CH2OH),添加型阻燃剂中三聚氰胺磷酸盐(MP)阻燃环氧树脂的性能好于聚磷酸铵(APP);2种类型阻燃剂相比,2种反应型阻燃剂阻燃环氧树脂的力学性能、阻燃性能和热稳定性均好于添加型的MP和APP阻燃剂。  相似文献   

12.
In an attempt to improve thermal and flame‐retardant properties of epoxy resins efficiently, a new reactive phosphorus‐containing curing agent called 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐yl‐(phenylimino)‐(4‐hydroxyphenyl)me‐thane (DOPO‐PHM) was synthesized and was combined with 4,4′‐diaminodiphenyl methane (DDM) to co‐cure epoxy resins (E51), which covalently incorporated halogen‐free DOPO organ groups into the epoxy networks. The chemical structure of this curing agent was confirmed by FTIR, 1D, and 2D NMR spectra. A reaction mechanism during the preparation was proposed, and the electron effect on the stabilization of the carbocation was discussed. Various DDM/DOPO‐PHM molar ratios were used to get the materials with different phosphorus contents. Their dynamic mechanical, thermal, and flame‐retardant properties were evaluated by dynamic mechanical thermal analysis, thermogravimetric analysis, and limiting oxygen index (LOI) respectively. All samples had a single Tg, showing that these epoxy resins were homogeneous phase for long‐term use in spite of adding DOPO‐PHM. Both char yields (under nitrogen and air atmospheres) increased with the increasing of phosphorus content and the LOI values increased from 24.5 for standard resin to 33.5 for phosphorus‐containing resins, indicating the significant enhancement of thermal stability and flame retardancy. POLYM. ENG. SCI., 54:1192–1200, 2014. © 2013 Society of Plastics Engineers  相似文献   

13.
反应型DOPO基阻燃剂在环氧树脂中的应用   总被引:3,自引:0,他引:3  
综述了近年来在反应型DOPO基(9,10-二氢-9-氧-10-磷杂菲-10-氧化物)阻燃剂中引入羟基、羧基、氨基等基团以及与氰酸酯加成得到具有阻燃性的环氧树脂固化剂以及在DOPO衍生物中引入环氧基,制备本质阻燃环氧树脂的研究进展。  相似文献   

14.
In this study, a novel Schiff base of melamine used as flame‐retardant curing agent for epoxy resins, was synthesized via condensation reaction of 4‐hydroxybenzaldehyde with melamine, followed by the addition of 9,10‐dihydro‐9‐oxa‐10‐phosphaphen‐anthrene 10‐oxide (DOPO) to the resulting imine linkage. The structure of DOPO‐containing melamine Schiff base (P‐MSB) was characterized by Fourier transformed infrared spectroscopy, 1H‐nuclear magnetic resonance (1H‐NMR) and 31P‐NMR. The compound (P‐MSB) was used as a reactive flame retardant in o‐cresol formaldehyde novolac epoxy resin (CNE) to prepare flame‐retardant epoxy resins for electronic application. The thermal and flame‐retardant properties of the epoxy resins cured by various equivalent ratios phenol formaldehyde novolac (PN) and P‐MSB were investigated by the nonisothermal differential scanning calorimetry, the thermogravimetric analysis, and limiting oxygen index test. The obtained results showed that the cured epoxy resins possessed high Tg (165°C) and good thermal stability (T5%, 321°C). Moreover, the P‐MSB/CNE systems exhibited higher limiting oxygen index (35) and more char was maintained in P‐MSB/CNE systems than that in PN/CNE system and the effective synergism of phosphorus–nitrogen indicated their excellent flame retardancy. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Two novel phosphorus‐rich prepolymers based on epoxy novolac and terephthaldialdehyde and potential flame retardants, 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) and 2,8‐dimethyl‐phenoxaphosphin‐10‐oxide (DPPO) were synthesised. The resultant flame‐retardant epoxy resins were cured with 4,4′‐diaminodiphenylmethane (DDM) and 4,4′‐diamino‐dicyclohexylmethane (PACM). Their flammability and burning behavior were characterised by UL 94 and LOI and compared with analogue prepolymers based on diethylphosphite (DEPP). The glass transition temperatures were determined by DSC measurements. Furthermore, the structures of two exemplary molecules based on p‐tolylaldehyde adducts were examined by XRD and NMR analysis to determine the possibilities of linking the two novel DOPO and DPPO derivatives to the backbone of the epoxy resin. Additionally, the char yields were determined by TG analysis and thermal desorption mass spectroscopy of the thermosets used and compared with each other to obtain more information about the possible mode of flame‐retardant action of the different phosphorus compounds. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
By curing the reaction mixture of diphenylphosphine oxide (DPO) and diglycidyl ether of bisphenol A with 4,4′‐diaminodiphenylsulfone, flame‐retardant epoxy resins (EP/DPO) were prepared. Flame‐retardant epoxy resins modified with 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) were similarly prepared (denoted as EP/DOPO). The limiting oxygen index value of pure epoxy resin, EP/DPO–P‐0.9 (with a phosphorus content of 0.9 wt%), and EP/DOPO–P‐0.9 are 23.0, 30.5, and 29.4%, respectively. EP/DPO–P‐0.9 reached a UL‐94 vertical burning test V‐0 rating, while EP/DOPO–P‐0.9 failed. The results of the cone calorimetry test, thermo‐oxidative degradation behavior study, and pyrolysis‐gas chromatography/mass spectrometry analysis indicated that both flame retardants mainly act through the gas‐phase activity mechanism. Together, the results of this study suggest that EP/DPO are high performance resins with good thermal stability, high glass transition temperature, and low water absorptivity for practical applications.  相似文献   

17.
A novel phosphorus/nitrogen-containing flame retardant (DOPO-AM) was synthesized by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and acrylamide (AM) and its chemical structure was characterized. DOPO-AM was added into diglycidyl ether of bisphenol-A (DGEBA) with curing agent m-xylylenediamine (MXDA)to prepare flame retarded epoxy resin to reduce the possibility of fire. The compounds with different valences sulfur respectively replace partial DGEBA resin to study the effects of sulfur valences on the flame retardance of epoxy resins. The results indicated that DOPO-AM had excellent flame retardance for epoxy resin. When phosphorus content was only 0.75%, DGEBS resin containing DOPO-AM achieved the limiting oxygen index value of 34.55% and vertical burning test (UL-94) V-0 rating. Although sulfur element is help for refractive index of epoxy resin, sulfur element in three kinds of valences all weaken the flame retardant of epoxy resin. Improving phosphorus content is help for the synergistic effect of P N and P N S. Moreover, the flame retardance is not proportional to sulfur valence, sulfide with +2 valence had the best flame retardance. However, +6 valence sulfonic with strong oxidation effect worsen the flame retardant. Simultaneous thermal analysis of thermogravimetric analyzer and differential scanning calorimeter and scanning electronic microscopy photographs verified the above conclusion.  相似文献   

18.
DOPO based flame retardants demonstrate exceptional flame retardancy efficiency when applied to epoxy resins. However, the crosslinking degree of epoxy resin may decrease due to the addition of DOPO, leading to a deterioration in flame retardancy and mechanical properties. Herein, a reactive DOPO derivative flame retardant 6-((1H-benzo[d]imidazol-2-yl) amino) dibenzo oxaphosphinine 6-oxide (BADO) was successfully synthesized, which contains multiple reactive sites, thus ensuring a higher degree of crosslinking in the system. As a result, the modified epoxy resin exhibits excellent flame retardancy. The limiting oxygen index value of the modified epoxy resins increased from 19.8% to 29.7% by adding 7.5 wt% BADO, and its UL-94 test passed V-0. Flame retardancy mechanism analysis reveals that BADO exhibits both gas-phase and condensed-phase flame retardant effects. In particular, the formation of a porous inside-char layer is a significant factor in reducing smoke release. The 7.5% BADO/EP composite exhibited a 43.2% reduction in total smoke production and a 43.6% reduction in total smoke rate compared to neat epoxy resins (EP). Furthermore, the addition of BADO slightly deteriorates the mechanical properties of the modified epoxy resin.  相似文献   

19.
In this study, bisphenol A epoxy resin (DGEBA) was chemically modified by 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO), and the molecular structure of the modified epoxy resin was characterized by Fourier transform infrared spectra. The effects of DOPO on liquid oxygen compatibility of DGEBA were calculated using mechanical impact method. The results indicated that epoxy resin (EP‐P1)/4,4‐diaminobisphenol sulfone (DDS) was compatible with liquid oxygen. When compared with EP/DDS, differential scanning calorimetry and thermogravimetry analyses showed that EP‐P1/DDS and EP‐P2/DDS had much higher glass transition temperatures and char yield. X‐ray photoelectron spectroscopic analysis suggested that phosphorus atoms on the surface of EP‐P1/DDS and EP‐P2/DDS could act in the solid phase to restrain the incompatible reaction, which was in accordance with the flame‐retardant mechanism of phosphorus‐containing compounds. The compatibility mechanism of EP‐P1/DDS was further proposed. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40848.  相似文献   

20.
An organo‐modified Boehmite (o‐Boehmite) was used to prepare nanocomposite UV‐curing coatings, based on a cycloaliphatic epoxy resin (3,4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexane carboxylate). A hyperbranched polymer (HBP) based on highly branched polyester, was also added to the resin, with the aim to modify its reactivity, such as a possible route to increase the toughness of the resin. Different amounts of the nanofiller and the HBP, ranging from 5 up to 20 wt % of resin, were dispersed into the resin in the presence of triarylsulfonium hexafluoroantimonate, as a photoinitiator for the UV curing of the resin. The rheological behavior of the formulations produced was studied as function of the shear rate and of the content of each filler using a cone and plate rheometer. A general increase in viscosity was observed with increasing the volume fraction of each filler and a moderate pseudoplastic behavior was observed when o‐Boehmite filler was added. A non‐Newtonian behavior was observed with the incorporation of the HBP. The viscosity of the epoxy/boehmite resin mixtures was analyzed as function of the nanofiller volume fraction. In the case of epoxy/hyperbranched resin mixtures, the Cross equation was used to predict the viscosity of each formulation as a function of the shear rate and an appropriate relationship to predict the viscosity of each formulation as a function of the filler volume fraction, was determined. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号