首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Poly(vinyl alcohol)s (PVA) with high and low molecular weights were chemically modified by introducing acetaldehyde onto the polymer backbone to induce thermal‐responsive properties. The influence of both molecular weight ( ) and acetalization degree on the lower critical solution temperature (LCST) of thermo‐sensitive polymer was investigated. Moreover, a temperature responsive hydrogel was prepared by controlled cross‐linking of acetalized poly(vinyl alcohol) (APVA) and glutaraldehyde. As a model drug, ciprofloxacin was introduced into the prepared thermal sensitive hydrogel to reveal the drug loading and release behaviors. The structure, thermo‐sensitivity, swelling/deswelling kinetics, morphology, and drug loading/release behaviors were also investigated. The results indicated that the APVA polymer solution exhibited temperature responsivity, and APVA with high acetalization degree showed low LCST, whereas those with high PVAs showed high LCST. Meanwhile, morphology study was identical with the swelling/de‐swelling behavior. The loading and release of ciprofloxacin were controllable. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39720.  相似文献   

2.
The effects of polyethylene oxide (PEO) molecular weight (Mv), and volume fraction ( ) on the morphology of electrospun sulfur free softwood lignin nanofibers were investigated. Small amounts of PEO were used during preparations of the solutions to aid the electrospinning process. It was found that tripling the PEO volume fraction resulted in a transition from semi‐dilute un‐entangled to semi‐dilute entangled solutions. Conversely, the solution remained in the semi‐dilute un‐entangled regime as the molecular weight was increased by five times. The effects of molecular weight and volume fraction of PEO both on entanglement density and fiber morphology were unified by scaling PEO viscosities as a function of . We investigated and discussed conditions that would produce smooth fibers and conditions that would produce fibers with beads. In the case of beads‐on‐a‐string formation, bead widths remained constant regardless of the molecular weight and concentration of PEO, but the bead length changed. Additionally, we observed a decrease in the diameter of the fibers and the dimension of beads (length and width of beads) with an increase in the electric field used for electrospinning. The aspect ratio of beads increased with increases to both the electric field and the PEO molecular weight or concentration. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44172.  相似文献   

3.
In this study, a novel ‐intercalated layered double hydroxide (Sb‐LDH) was prepared by simultaneous recovering of LDH structures and intercalation of into LDH layers. The prepared Sb‐LDH composites remain the hydrotalcite structure with layered geometry and show higher thermal property than that of LDH. When applied to poly(vinyl chloride) (PVC) composites, Sb‐LDH showed limited thermal stability for PVC at the early stage of thermal and thermooxidative degradation processes. However, Sb‐LDH could retard the thermal cracking of the carbonaceous conjugated polyene of PVC which may hinder further degradation, and the moderate amount of Sb‐LDH (1, 2, and 5 wt %) in PVC resin can retard the process of decarbonation and enhance char formation. Sb‐LDH also promoted the transparency of PVC but darkened the color. With the advantages of transparency promotion, high temperature resistance, and long‐term stability, the prepared Sb‐LDH is a potential thermal stabilizer for PVC resins. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42524.  相似文献   

4.
Polymercaptanized soybean oil (PMSO), the product of a thiol‐ene reaction between soybean oil and hydrogen sulfide, is a material of interest as a lubricant additive and polymer precursor. We investigated with gel permeation chromatography, nuclear magnetic resonance (one‐dimensional and two‐dimensional), gas chromatography–mass spectrometry, and viscometry the changes that occur with PMSO upon heating or ultraviolet irradiation. The observed changes were due to a further thiol‐ene reaction between the thiol groups and the residual unsaturation. The formation of oligomers was a result of new sulfide bridges. Additionally, tetrahydrothiophene moieties were detected. An almost linear increase of the average molecular weight (MW) and the polydispersity index (PDI) was observed upon heat treatment [number‐average MW ( ) = 1180 Da, PDI = 1.32 for PMSO, = 1720 Da, PDI = 2.17 for PMSO that was heated for 1000 h at 130 °C]. PDI correlated best with the z‐average MW. The was the best predictor of the viscosity. For samples with close , the higher PDI corresponded to a higher viscosity index. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46150.  相似文献   

5.
We present the first‐principles investigation of (x ≤ 0.375). Controllable thermal expansion of is achieved by different Ti contents. The negative thermal expansion (NTE) behavior is weakened gradually with increasing Ti content, which is consistent with experimental measurements. The Jahn–Teller effect plays an important role in the cubic‐to‐rhombohedral phase transition, which stems from the enhanced energy stability when the 3d orbitals of cation split into triply degenerate and sets. The unusual thermal stiffening of is found, which is similar to that of and but contrary to other NTE materials.  相似文献   

6.
Consider a stationary spatio‐temporal random process and let be a sample from the process. Our object here is to predict, given the sample, for all t at the location s o. To obtain the predictors, we define a sequence of discrete Fourier transforms using the observed time series. We consider these discrete Fourier transforms as a sample from the complex valued random variable . Assuming that the discrete Fourier transforms satisfy a complex stochastic partial differential equation of the Laplacian type with a scaling function that is a polynomial in the temporal spectral frequency ω, we obtain, in a closed form, expressions for the second‐order spatio‐temporal spectrum and the covariance function. The spectral density function obtained corresponds to a non‐separable random process. The optimal predictor of the discrete Fourier transform is in terms of the covariance functions. The estimation of the parameters of the spatio‐temporal covariance function is considered and is based on the recently introduced frequency variogram method. The methods given here can be extended to situations where the observations are corrupted by independent white noise. The methods are illustrated with a real data set.  相似文献   

7.
Rheological properties and flow instability at capillary extrusion of a random terpolymer composed of vinyl butyral, vinyl alcohol, and vinyl acetate, that is denoted as PVB in this article, are studied. It is found that the rubbery plateau modulus is 1.3 MPa at 100°C from the oscillatory shear modulus. Furthermore, the average molecular weight between entanglement couplings Me is found to be 2670. Because of the relatively high value of , it shows rubbery region in the wide temperature range (90°C–180°C). At the capillary extrusion, the surface instability (shark‐skin failure) appears prior to volumetric melt fracture. The onset stress of the shark‐skin failure, ca. 0.18 MPa, is similar to that of polyethylene, although PVB used in this study has narrow molecular weight distribution. Moreover, the apparent slippage is not detected, presumably due to good adhesion to the die wall. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40337.  相似文献   

8.
The preparation of nonwoven mats of electrospun poly(lactic acid)/polyaniline (PANI) blend nanofibers faces some critical challenges that will be addressed in the present work. The challenges are in achieving high and adjustable content of PANI while keeping the spinnable solution nonagglomerated with no need to further filtration that might lead to wrong estimation of PANI content in the mat. We report an unprecedented content of 40% wt of PANI that is achieved using a new two‐step procedure. It is based on: (1) the preparation of the spinnable solution from a friable nonagglomerated and readily dispersible PANI: ‐TSA powder and (2) the use of an optimized mixture of ‐cresol/dichloromethane. The obtained nanofiber mats are characterized by FTIR and UV–vis spectroscopy. The morphology and the thermal stability of the nanofibers are investigated by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The amorphous structure of the nanofibers is verified using XRD measurements. The DC‐conductivity of these blend nanofibers is found to be far larger than the published DC‐conductivity values for blend nanofibers of PANI with PLLA or with other polymers. This is attributed to the high content of PANI in the blend and to the role played by ‐cresol as a secondary dopant. The investigation of the aging effect on the DC‐conductivity reveals an exponential decrease with a characteristic time of weeks. The electrical impedance spectroscopy (EIS) shows a pure ohmic behavior of the blend mat. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43687.  相似文献   

9.
This article presents an experimental study on the shape memory behavior of blends of thermoplastic polyurethane (TPU) and biodegradable polylactic acid (PLA) at the PLA/TPU weight ratios of 70/30 (PT7030) and 50/50 (PT5050). The manufactured springs were studied comprehensively based on their morphological and thermal properties. Scanning electron microscopy micrographs were captured, which verified that TPU was compatible with PLA. The wide‐angle X‐ray diffraction suggested that the crystallinity of PLA was enhanced in the presence of TPU. In order to determine the shape recovery properties [shape recovery ratio (Rr), shape fixing ratio (Rf), and shape recovery force (Fr)], the samples programmed at three different temperatures (Tp) of 70, 80, and 90 ° and at various recovery temperatures (Tr) over 40 to 90 ° , were studied. In general, the spring made with PT7030 showed higher Rr, Rf, and Fr values. The highest Rr (99%) was obtained at programmed temperature (Tp) of 70 ° and recovery temperature (Tr) of 90 ° . However, the Rr value for this spring programmed at 70 ° and recovered near body temperature was 50% with Fr of 1.4 N. Furthermore, the highest Fr (15.6 N) was observed in the spring made of PT7030 programmed at 80 ° and recovered at Tr of 78 ° . © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45115.  相似文献   

10.
The solution and diffusion properties of cyclohexane, cyclohexanol, and cyclohexanone in poly(ethylene glycol) (PEG) and crosslinked PEG have been studied in the temperature range of 368.15 to 403.15 K using inverse gas chromatography (IGC) technique. The infinite dilute activity coefficient (Ω) and diffusion coefficient (D) have been determined for the above solvent/polymer systems. Accordingly, several thermodynamic functions, the diffusion pre‐exponential factor, and activation energy have been attained. The results showed a decrease in Ω and an increase in D with rising temperature. The order of the relative magnitude of Ω and D of the solvents were explained by comparing their interactions with the polymer and their collision diameters, respectively. Moreover, Ω and D in crosslinked PEG were smaller than those in PEG at various temperatures. The analysis of Ω, the infinite dilute selectivity and capacity showed the possibility of using crosslinked PEG as an appropriate membrane material for the separation of cyclohexane, cyclohexanol, and cyclohexanone mixture. A thermodynamic study also implied that the solvent sorptions in the polymers were all enthalpically driven in the experimental range. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

11.
A polymeric gas separation membrane utilizing polybenzimidazole based on 4,4′‐(hexafluoroisopropylidene)bis(benzoic acid) was prepared. The synthesized membrane has an effective permeating area of 8.3 cm2 and a thickness of 30 ± 2 µm. Gas permeation properties of the membrane were determined using H2, CO2, CO, and N2 at temperatures ranging from 24°C to 200°C. The PBI‐HFA membranes not only exhibited excellent H2 permeability, but it also displayed superior gas separation performance particularly for H2/N2 and H2/CO2. The permeation parameters for both permeability and selectivity [ and α(H2/N2); and α(H2/CO2)] obtained for the new material were found to be dependent on trans‐membrane pressure difference as well as temperature, and were found to surpass those reported by Robeson in 2008. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42371.  相似文献   

12.
The profiles of PLA/PVA filament parameters (e.g., temperature, velocity, tensile stress, and apparent elongational viscosity) along the spinline in the low‐speed melt spinning process under various spinning conditions were investigated. Owing to the combination of the filament velocity and filament temperature measurements using laser doppler velocimetry (LDV) and infrared thermography, respectively, the fiber formation zone was determined. The length of the fiber formation zone obtained from filament velocity profiles is always shorter than that obtained from the filament temperature profiles ( . Obviously, this unexpected phenomenon occurs for low spinning speeds due to the axial heat conduction effect of the filament along the spinline and the nonuniform radial temperature distribution through the cross‐sectional thick filament. Another remarkable finding is related to the Nusselt number which has been found as nearly constant along the spinline in the low‐speed melt spinning process. Thus, mathematical simulations of the filament temperature profiles will be simplified drastically. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44258.  相似文献   

13.
The dynamics of drop‐on‐demand (DoD) droplet formation and subsequently impact on the solid substrate are investigated using a three‐dimensional (3‐D) multirelaxation‐time (MRT) pseudopotential lattice Boltzmann (LB) model. The wettability of nonideal nozzle plate and solid substrate is modeled by a geometric scheme within the LB framework. The dynamics of droplet formation are explored in a range of the inverse of Ohnesorge number , , and , and the Reynolds number , , and . For , no satellite droplet is observed and the wettability of nozzle plate greatly influences the velocity and length of jetting fluids. For , the filament breakup and recombination are observed. The moment of filament breakup is delayed with advancing contact angle increasing. For with , the primary and satellite droplets could not be recombined with and which agree with the literature. Whereas with , the recombination occurs. The dynamics of subsequent oscillating droplet impact on the substrate are similar to that of equilibrium droplet which could obtain high‐resolution printed features. Consequently, considering with large and numbers, the printable range could be extended which could help increase the printing frequency and boost the production outputs of inkjet printing. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2837–2850, 2018  相似文献   

14.
Methyl acrylate/acrylonitrile copolymers (MA/AN) were reactively compatibilized as the dispersed phase into poly(ethylene) (PE) for potential hydrocarbon barrier materials. The MA/AN was made reactive by including p‐aminostyrene (PAS), yielding terpolymers (MA/AN/PAS) with pendant primary amine functionality (number average molecular weight = 65–133 kg mol?1, dispersity (?)=1.83–2.53, molar composition of PAS in copolymer FPAS = 0.03–0.14, molar composition of AN = FAN = 0.27–0.52). The non‐functional MA/AN and amino functional MA/AN/PAS were each melt blended into PE that was grafted with maleic anhydride (PE‐g‐MAnn) at 200 °C at 70:30 wt % PE‐g‐MAnn:co/terpolymer. After extrusion, the dispersed phase particle size (volume to surface area diameter, ) was coarse (12.6 μm) for the non‐reactive blend whereas it was much lower for the reactive blend ( = 1.2 μm). Coarsening after annealing at 150 °C was slow, but the domain sizes increased only slightly for both cases. The reactive blend was deemed sufficiently stable and thus was suitable as a candidate barrier material for further testing against olefins. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44177.  相似文献   

15.
Quaternary ammonium functionalized poly(arylene ether) (QPAE‐Br) membranes based on 2,2′,6,6′‐tetramethyl biphenol for diffusion dialysis (DD) were designed and successfully fabricated via nucleophilic substitution polycondensation, bromination, film casting, and quaternization. The structures, thicknesses, ion‐exchange capacities (IECs), water uptakes, swelling ratios, ion conductivities, and mechanical properties of QPAE‐Br were used to characterize the membranes. The influence of the membrane structures on the DD performances was investigated by DD tests of simulated industrial pickling wastewater (1 mol/L HCl, 0.1 mol/L FeCl2). The DD results show QPAE‐a (IEC = 1.51 mmol/g) as the best DD candidate. Predialysis treatments further improved the DD performances of QPAE‐Br. QPAE‐a exhibited an excellent proton diffusion coefficient ( ) of 0.033 m/h and a high separation factor (S) of 95.45 after the predialysis treatment at room temperature; these values were much higher than those of the commercial DF‐120B membrane (0.004 m/h for and 24.3 for S at 25 °C) and other reported DD membranes. QPAE‐a has great potential for acid recovery via DD. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45333.  相似文献   

16.
It was determined that the thermal stability of poly(4‐methyl‐1‐pentene) (P4MP) was maintained up to 424°C in an inert atmosphere by thermogravimetric analysis. The retention diagrams of ethyl acetate, tert‐butyl acetate, and benzene on P4MP were plotted at temperatures between 30 and 280°C by inverse gas chromatography (IGC) technique. Melting temperature of the polymer was determined as 230 and 239.5°C by IGC and differential scanning calorimetry (DSC), respectively. The percent crystallinity of P4MP was obtained from the retention diagrams at temperatures below melting point. The percent crystallinity obtained by IGC is in good agreement with the ones obtained by DSC. Then, specific retention volume, V, weight fraction activity coefficient, Ω, Flory‐Huggins polymer‐solvent interaction parameter, χ, equation‐of‐state polymer‐solvent interaction parameter, χ, and effective exchange energy parameter, Xeff of octane, nonane, decane, undecane, dodecane, tridecane, n‐butyl acetate, isobutyl acetate, isoamyl acetate with P4MP, were determined between 240 and 280°C by IGC. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Damping in MREs is considered to be ascribed to viscous flow of the rubber matrix, interfacial damping at the interface between the magnetic particles and the matrix and magnetism induced damping. In this study, individual components in MREs that contribute to material damping were investigated. A model was developed to include viscous flow of the rubber matrix, interfacial damping and magnetism induced damping to give the total damping capacity of MREs ( )It was found that depends on frequency, iron sand content, strain amplitude and is independent of the applied magnetic field over saturation magnetization. The proposed model was assessed experimentally using a series of isotropic and anisotropic MREs. Comparison between tan δ with showed that matched the experimental trends with average percentage difference of 8.1% and 21.8% for MREs with modified iron sand unmodified iron sand, respectively. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43247.  相似文献   

18.
Two TiCl4/Di/MgCl2 type supported Ziegler–Natta catalysts were prepared by loading dibutylphthalate or dicyclopentyldimethoxysilane (DCPDMS) (internal donor, Di) and TiCl4 on activated δ‐MgCl2 in sequence, and a blank catalyst was prepared by loading TiCl4 on the same δ‐MgCl2 without adding Di. These catalysts have similar specific surface area and pore size distribution, thus form a suitable base for comparative studies. Propylene polymerization with the catalysts was conducted in n‐heptane slurry using triethylaluminum (TEA) as cocatalyst, and the effects of Di as well as De (external donor, in this work it was DCPDMS) on the number of active centers, the distribution of active centers among three polypropylene (PP) fractions (isotactic, medium isotactic, and atactic PP chains), and chain propagation rate constants of the PP fractions were studied by counting the number of active centers in the PP fractions using a method based on selective quench‐labeling of the propagation chains by 2‐thiophenecarbonyl chloride. When De was not added in the polymerization, introducing a phthalate type Di in the catalyst evidently changed the active center distribution by enhancing the proportion of active centers producing isotactic PP (iPP) ( ), but scarcely changed reactivities of the three groups of active centers forming the three fractions. When the De was added in the polymerization system with TiCl4/phthalate/MgCl2 catalyst, further shifting of active center distribution in favor of took place, meanwhile reactivities of the three groups of active centers also remarkably changed in favor of . Mutual effects of these changes led to overwhelming dominance of iPP production in the TiCl4/Di/MgCl2–TEA/De system (Di = phthalate, De = alkoxysilane). In contrast, though using alkoxysilane as Di also caused shifting of active center distribution in favor of when De was not added, addition of alkoxysilane De caused reverse shifting of active center distribution in favor of those producing PP of lower stereoregularity. This unfavorable change largely counteracted the reactivity changes in favor of caused by the De, rendering the catalytic system rather poor isospecificity. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46605.  相似文献   

19.
Borax (Na2B4O7, 10.5% Boron) loaded CMC‐g‐cl‐poly(AAm) hydrogel composites were prepared by in situ grafting of acrylamide on to sodium carboxymethyl cellulose in the presence of borax by free radical polymerization technique to develop slow boron (B) delivery device. The composition, morphology, and mechanical properties of synthesized composites were studied by X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, texture analyser, and dynamic shear rheometer. Characterization revealed formation of borate ion ( ) from borax during polymerization reaction leading to extensive crosslinking of cellulosic chains and generation of mechanically strong composite hydrogels. Dynamic release of from the synthesized composites hydrogels followed Fickian diffusion mechanism and composites with high mechanical strength resulted in slow release of B. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43969.  相似文献   

20.
The effect of suction flow on the mass transfer coefficient of tubular ultrafiltration membranes, in particular that under a high‐flux condition, was studied. We pointed out that is proportional to under turbulent conditions, and that the proportional constant, b, exceeds 0.023 when the effect of suction flow is not negligible. We conducted the velocity variation method using ultrafiltration membranes with MWCOs of 20k and 100k and dextrans having molecular weights of 40,000 and 70,000 at the conditions, where exceeded . We demonstrated that the effect of suction flow includes not only flux but also the diffusion coefficient of solute, and that the ratio of the flux to the diffusion coefficient, expressed as , is an important index. Finally, we concluded that , when is smaller than , giving the Deissler equation itself, and that , when exceeds . © 2017 American Institute of Chemical Engineers AIChE J, 64: 1778–1782, 2018  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号