首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study is an attempt to investigate the effect of a representative pro‐oxidant (manganese stearate) on the degradation behavior of 70 ± 5 μ thickness films of LDPE, LLDPE and their blends. Films were prepared by film blowing technique in the presence of varying quantities of manganese stearate (0.5–1% w/w) and subsequently subjected to accelerated degradative tests: xenon arc exposure and air‐oven exposure (at 70°C). The physico–chemical changes induced as a result of aging were followed by monitoring the mechanical properties (Tensile strength and Elongation at break), carbonyl index (CI), morphology (SEM), melt flow index (MFI), oxygen content (Elemental analysis), and DSC crystallinity. The results indicate that the degradative effect of pro‐oxidant is more pronounced in LDPE than LLDPE and blends, due to the presence of larger number of weak branches in the former. The degradation was also found to be proportional to the concentration of the pro‐oxidant. Flynn‐Wall‐Ozawa iso‐conversion technique was used to determine the kinetic parameters of degradation, which were used to determine the effect of the pro‐oxidant on the theoretical lifetime of the polymer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Bio‐based, biodegradable in soil, as well as degradable polyethylene mulching films with pro‐oxidants, have been introduced in the market in an effort to deal with the serious problem of managing plastic waste streams generated from conventional mulching films. In a previous experimental investigation, a series of naturally degraded under water melon cultivation conditions linear low density polyethylene (LLDPE) mulching films with pro‐oxidants, buried in the field for 8.5 years, were recovered intact even though undergoing a continuous slow abiotic degradation in soil. The aim of the present article was to simulate the behavior of the LLDPE mulching films with pro‐oxidants under a much longer time‐scale (e.g. some decades). Toward this purpose, samples of LLDPE with pro‐oxidants film were artificially degraded to simulate severe degradation/fragmentation of these films while been buried in the soil for many years, following the end of the cultivation season. Further degradation of these severely degraded samples was investigated by burying them in the soil over a period of seven years. During this burial period, all degradation parameters and their evolution with time were measured. The artificially degraded LLDPE film samples with pro‐oxidants, in contrast to the naturally degraded film that remained intact for 8.5 years, were gradually transformed into tiny micro‐fragments in the soil. These fragments, through a continuing abiotic degradation process under natural soil conditions are eventually transformed into invisible micro‐fragments. The fate of these micro‐fragments and their long‐term impact to the environment and human health is unpredictable. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42289.  相似文献   

3.
Natural antioxidant additives were compounded into linear low‐density polyethylene (LLDPE) using a twin‐screw counter‐rotating mixer and compression molded into films. Manufactured LLDPE films contained 2715 mg kg?1 α‐tocopherol in its free and β‐cyclodextrin complexed form and 1950 mg kg?1 quercetin in its free and γ‐cyclodextrin complexed form. Both cyclodextrin complexes were loaded into films at 1.5% by weight. These natural antioxidants were incorporated into LLDPE resins with two different catalyst types, Ziegler‐Natta and metallocene. Films were characterized by optical microscopy, oxidation induction time (OIT), oxygen transmission rate, contact angle analysis, and atomic force microscopy (AFM). All antioxidant additives increased the oxidative stability of LLDPE as measured by increased OIT, particularly quercetin. Natural antioxidants and their cyclodextrin inclusion complexes may provide a dual function in packaging to protect the polymer from oxidative degradation during melt processing and to delay the onset of oxidation of the packaged food during storage. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
The morphology and stress relaxation of coextruded five‐layer LLDPE (linear low‐density polyethylene)/EVA (ethylene‐vinyl‐acetate) copolymer films were studied. Increasing VA (vinyl acetate) content in EVA causes a decrease of shrink tension in the films, which can be explained by a decrease in amount of crystallinity. The relaxation time spectrum of the coextruded crosslinked LLDPE/EVA films is similar to the relaxation time spectrum of crosslinked LLDPE film at room temperature. However, at elevated temperatures, an additional peak appears on the spectrum of coextruded film. The cause of this peak is temperature‐ and stress‐induced recrystallization of EVA during the relaxation test. This recrystallization was confirmed with DSC and wide angle X‐ray analysis. Polym. Eng. Sci. 44:1716–1720, 2004. © 2004 Society of Plastics Engineers.  相似文献   

5.
In this article, a series of amphiphilic graft copolymers, namely poly(higher α‐olefin‐copara‐methylstyrene)‐graft‐poly(ethylene glycol), and poly(higher α‐olefin‐co‐acrylic acid)‐graft‐poly(ethylene glycol) was used as modifying agent to increase the wettability of the surface of linear low‐density polyethylene (LLDPE) film. The wettability of the surface of LLDPE film could be increased effectively by spin coating of the amphiphilic graft copolymers onto the surface of LLDPE film. The higher the content of poly(ethylene glycol) (PEG) segments, the lower the water contact angle was. The water contact angle of modified LLDPE films was reduced as low as 25°. However, the adhesion between the amphiphilic graft copolymer and LLDPE film was poor. To solve this problem, the modified LLDPE films coated by the amphiphilic graft copolymers were annealed at 110° for 12 h. During the period of annealing, heating made polymer chain move and rearrange quickly. When the film was cooled down, the alkyl group of higher α‐olefin units and LLDPE began to entangle and crystallize. Driven by crystallization, the PEG segments rearranged and enriched in the interface between the amphiphilic graft copolymer and air. By this surface modification method, the amphiphilic graft copolymer was fixed on the surface of LLDPE film. And the water contact angle was further reduced as low as 14.8°. The experimental results of this article demonstrate the potential pathway to provide an effective and durable anti‐fog LLDPE film. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Proxidant additives represent a promising solution to the problem of the environment contamination with polyethylene film litter. Pro‐oxidants accelerate photo‐ and thermo‐oxidation and consequent polymer chain cleavage rendering the product apparently more susceptible to biodegradation. In the present study, fungal strain, Aspergillus oryzae isolated from HDPE film (buried in soil for 3 months) utilized abiotically treated polyethylene (LDPE) as a sole carbon source and degraded it. Treatment with pro‐oxidant, manganese stearate followed by UV irradiation and incubation with A. oryzae resulted in maximum decrease in percentage of elongation and tensile strength by 62 and 51%, respectively, compared with other pro‐oxidant treated LDPE films which showed 45% (titanium stearate), 40% (iron stearate), and 39% (cobalt stearate) decrease in tensile strength. Fourier transform infrared (FTIR) analysis of proxidant treated LDPE films revealed generation of more number of carbonyl and carboxylic groups (1630–1840 cm−1 and 1220–1340 cm−1) compared with UV treated film. When these films were incubated with A. oryzae for 3 months complete degradation of carbonyl and carboxylic groups was achieved. Scanning electron microscopy of untreated and treated LDPE films also revealed that polymer has undergone degradation after abiotic and biotic treatments. This concludes proxidant treatment before UV irradiation accelerated photo‐oxidation of LDPE, caused functional groups to be generated in the polyethylene film and this resulted in biodegradation due to the consumption of carbonyl and carboxylic groups by A. oryzae which was evident by reduction in carbonyl peaks. Among the pro‐oxidants, manganese stearate treatment caused maximum degradation of polyethylene. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
This study was aimed at finding a correlation between the experienced off‐flavor in packaged foods and the presence of specific degradation products in PE packaging films. The possibility to trap degradation products by chemical reactions with scavengers, that is, zeolites and maleic anhydride grafted LLDPE, were investigated. This trapping would prevent the degradation products from migrating to the polymer film surface and further into food in contact with the film. This work concludes that off‐flavor in water packed in LDPE‐films depends on extrusion temperature and the content of oxidation products in the polymer film. At lower extrusion temperatures, reactive additives to the LDPE material could control the release of off‐flavor giving components. Adsorbents, such as zeolites, which are able to adsorb degradation products, are effective also at higher extrusion temperatures. The amount of oxidized degradation products in the films correlated well to the perceived off‐flavor in the packed water. The presence of aldehydes and ketones have a clear impact on the off‐flavor. The best correlation between off‐flavor and oxidized components were found for C7? C9 ketones, and aldehydes in the range of C5 to C8. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 847–858, 2005  相似文献   

8.
Amide groups were anchored covalently on the surface of ethylene‐co‐acrylic acid (EAA) copolymer film by surface grafting of amino acid intermediates. The process consisted of four steps: conversion of carboxylic acid groups on the EAA surface to acid chloride groups, amino acid attachment, conversion of amino acid carboxyl groups to acid chloride groups, and amidation. All steps were carried out at room temperature. ATR‐FTIR spectroscopy was used to characterize the film after each step and to measure the kinetics of amino acid attachment. Three amino acids were studied: 12‐aminododecanoic acid (12‐ADDA), 5‐aminophthalic acid (5‐APA), and L ‐aspartic acid (AA). The longer‐chain 12‐ADDA compound was selected for its chemical similarity to migratory fatty amides that are commonly used to alter the frictional behavior of polyolefin films. The 5‐APA and AA compounds were selected because each has two carboxylic acid groups that can be converted to amide groups. After amidation, the modified EAA films were characterized by static water contact angle measurements and scanning probe microscopy. Results showed that the 12‐ADDA reacted to the surface much faster than the 5‐APA or AA. Several steps of aggressive rinsing confirmed that the 12‐aminododecanamide was chemically anchored onto the EAA surface. As a result, both hydrophilicity and surface roughness were increased. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1688–1694, 2004  相似文献   

9.
Light converting greenhouse films are novel plastic films for agriculture. In this study, 4‐methoxy‐N‐allyl‐1,8‐naphthalimide (MOANI) was grafted onto linear low‐density polyethylenes (LLDPE‐g‐MOANI) by melt reactive mixing. The effects of monomer concentration, chamber temperature, and reaction time on grafting degree were systematically studied. Evidence of the grafting reaction was determined by 1HNMR, FTIR, UV–Vis, and fluorescence spectrometry. Dynamic rheological properties, isothermal crystallization kinetics, surface morphologies of LLDPE, LLDPE‐g‐MOANI, and blends of LLDPE and MOANI (LLDPE/MOANI) were also analyzed. In addition, mechanical and fluorescent properties of unpurified LLDPE‐g‐MOANI films were further studied after the UV condensation weathering and acceleration migration test, respectively. We demonstrated that the cross‐linking of LLDPE could be inhibited effectively by the graft of MOANI; the grafted MOANI acted as a nucleation agent to accelerate crystallization; the grafted MOANI effectively inhibited the aging process of LLDPE and the migration of free MOANI to the surface of the unpurified LLDPE‐g‐MOANI film. The modified LLDPE showed the potential application in long‐term light converting films. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42172.  相似文献   

10.
This article reports the results of studies on the photooxidative and thermooxidative degradation of linear low‐density polyethylene (LLDPE) in the presence of cobalt stearate. Various amounts of cobalt stearate (0.1–0.9% w/w) blended with LLDPE and films of 70 ± 5 μ thickness were prepared by a film‐blowing technique. The films were subjected to xenon arc weathering and air‐oven aging tests (at 70°C) for extended time periods. We followed the chemical and physical changes induced as a result of aging by monitoring changes in the mechanical properties (tensile strength and elongation at break), carbonyl index, morphology (scanning electron microscopy), melt flow index, and differential scanning calorimetry crystallinity. Cobalt stearate was highly effective in accelerating the photodegradation of LLDPE films at concentrations greater than 0.2% w/w. The kinetic parameters of degradation, as determined by nonisothermal thermogravimetric analysis, were estimated with the Flynn–Wall–Ozawa isoconversion technique, which was subsequently used to determine the effect of cobalt stearate on the theoretical lifetime of LLDPE. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Food quality and safety are major concerns in the food industry. Antimicrobial packaging can be considered an emerging technology that could have a significant impact on life and food safety. Antimicrobial agents in food packaging can control the microbial population and target specific microorganisms to provide greater safety and higher quality products. In this work, a lactic acid grafted chitosan film was synthesized. Silver nanoparticles were loaded into the chitosan lactate (CL) film by equilibration in a silver nitrate solution, which was followed by citrate reduction. The presence of silver nanoparticles was confirmed with transmission electron microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis of the film. The silver‐nanoparticle‐loaded CL film was investigated for its antimicrobial properties against Escherichia coli. This newly developed material showed strong antibacterial properties and thus has potential for use as an antibacterial food‐packaging material. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
As an alternative to petroleum‐based polyol, hydroxyl containing material was prepared from linseed oil for polyurethane synthesis. Hexamethylene di‐isocyanate (HMDI) and/or 4, 4′‐methylene diphenyl di‐isocyanate (MDI) were used as isocyanate source. The polymerization reaction was carried out without catalyst. Polymer films were prepared by casting‐evaporation technique. The MDI/HMDI‐based polyurethane and its films had higher Tg and better thermal property than that of the HMDI‐based one because of the existence of benzene ring in the polymer chain. Static water contact angle was determined to be 74° and 77.5° for HMDI and MDI/HMDI‐based films, respectively. Water adsorption was found to be around 2.6–3.6% for both films. In vitro degradation of polyurethanes in phosphate buffered saline at 37°C was investigated by gravimetric method. Fourier transform infrared spectroscopy and scanning electron microscopy were used for confirmation of degradation on the polymer surface. The degradation rate of the HMDI‐based polyurethane film was found higher than that of the MDI/HMDI‐based film. Both the direct contact method and the MMT test were applied for determination of cytotoxicity of polymer films, and the polyurethane films investigated here was not cytotoxic. Silver‐containing films were prepared using Biocera A® as filler and were screened for their antibacterial performance against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and/or Bacillus subtilis. The films prepared with and without Biocera A® exhibited antibacterial activity. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
The nonisothermal crystallization half‐time (t0.5), defined as the time taken for a polymer film to reach half of its equilibrium crystallinity, was estimated from Raman spectroscopic measurements of crystallinity during blown film extrusion of a linear low‐density polyethylene (LLDPE) and an isotactic polypropylene (i‐PP). The crystalline a‐ and c‐axis orientation of LLDPE and i‐PP films, respectively, increased with decreasing crystallization half‐time. The transverse direction tensile modulus and tear strengths for LLDPE films also increased with decreasing half‐time. However, for i‐PP films, only the transverse direction tear strength increased with decreasing t0.5, while the machine direction properties did not show a significant dependence on half‐time. Our real‐time Raman spectroscopy studies provide experimental evidence to theories proposed in the literature 1 - 3 with regards to the influence of the nonisothermal crystallization process (along the film axis) on the imparted final film structure. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1740–1747, 2005  相似文献   

14.
In this study, the degradability of linear low‐density polyethylene (LLDPE) and poly(L ‐lactic acid) (PLLA) blend films under controlled composting conditions was investigated according to modified ASTM D 5338 (2003). Differential scanning calorimetry, X‐ray diffraction, and Fourier transform infrared spectroscopy were used to determine the thermal and morphological properties of the plastic films. LLDPE 80 (80 wt % LLDPE and 20 wt % PLLA) degraded faster than grafted low‐density polyethylene–maleic anhydride (M‐g‐L) 80/4 (80 wt % LLDPE, 20 wt % PLLA, and 4 phr compatibilizer) and pure LLDPE (LLDPE 100). The mechanical properties and weight changes were determined after composting. The tensile strength of LLDPE 100, LLDPE 80, and M‐g‐L 80/4 decreased by 20, 54, and 35%, respectively. The films, as a result of degradation, exhibited a decrease in their mass. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
Conducting composites of aniline/o‐anisidine copolymer doped by dodecylbenzenesulfonic acid (P(An‐co‐oAs)‐DBSA), linear low‐density polyethylene (LLDPE), and ethylene–acrylic acid copolymer (EAA) as compatibilizer were prepared by melt processing. The effects of composition on electrical conductivity, resistivity‐temperature characteristic, and mechanical properties were also investigated. The electrical conductivity of ternary composites markedly increased due to compatibilizition and protonation effect of the EAA. The SEM micrograph shows that the compatibility between the P(An‐co‐oAs)‐DBSA and the LLDPE matrix is enhanced after the introduction of EAA. The positive temperature coefficient of resistivity characteristic is observed. Tensile strength of P(An‐co‐oAs)‐DBSA/LLDPE/EAA composites is improved, compared with P(An‐co‐oAs)‐DBSA/LLDPE composites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1511–1516, 2005  相似文献   

16.
A new type of photodegradable poly(vinyl chloride)‐bismuth oxyiodide/TiO2 (PVC‐BiOI/TiO2) nanocomposite film was prepared by embedding a nano‐TiO2 photocatalyst modified by BiOI into the commercial PVC plastic. The solid‐phase photocatalytic degradation behavior of the as‐prepared film was investigated in ambient air at room temperature under UV light irradiation, with the aid of UV‐Vis spectroscopy, weight loss monitoring, scanning electron microscopy, and FT‐IR spectroscopy. Compared to the PVC‐TiO2 nanocomposite film, the PVC‐BiOI nanocomposite film and the pure PVC film, the PVC‐BiOI/TiO2 nanocomposite film exhibited a higher photocatalytic degradation activity. The optimal mass ratio of BiOI to TiO2 was found to be 0.75 %. The weight loss rate of the PVC‐BiOI/TiO2 nanocomposite film reached 30.8 % after 336 h of irradiation, which is 1.5 times higher than that of the PVC‐TiO2 nanocomposite film under identical conditions. The solid‐phase photocatalytic degradation mechanism of the nanocomposite films was briefly discussed.  相似文献   

17.
Radiation‐induced graft polymerization of acrylic acid (AAc) on poly(3‐hydroxybutyric acid) (PHB) film was carried out and the resulting film was thermally‐remolded. The PHB films grafted with AAc (PHB‐g‐AAc) having a degree of grafting higher than 5% completely lost the enzymatic degradability. The enzymatic degradability of the grafted film was recovered by thermal remolding. The highest enzymatic degradation rate was observed at degree of grafting of 10% after thermal remolding. The PHB‐g‐AAc films and thermally‐remolded PHB‐g‐AAc films were characterized by contact angle and differential scanning calorimetry. The enzymatic degradability of PHB‐g‐AAc films was lost by the grafted AAc, which covered the surface of PHB film. The acceleration of enzymatic degradation in the remolded PHB‐g‐AAc films was mainly caused by decrease of crystallinity of PHB by dispread of grafted AAc during thermal remolding. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3856–3861, 2006  相似文献   

18.
Linear low‐density polyethylene (LLDPE) with different fillers such as silica, mica, and soy protein isolate were compounded using a single screw extruder and blown into films by a Konark blow‐film machine. The filled LLDPE films were characterized for physicomechanical and optical properties. Barrier properties such as water vapor transmission rate and oxygen transmission rate of the filled LLDPE films were also reported. Microcrystalline parameters such as crystal size (〈N〉) and lattice distortion (g in %) of the filled LLDPE films were estimated from the wide‐angle X‐ray scattering method using Hosemann's paracrystalline model. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2938–2944, 2003  相似文献   

19.
Summary: The phase and thermal characteristics of blends consisting of linear low‐density polyethylene (LLDPE) (0.7 mol‐% hexene copolymer) and poly(ethylene‐ran‐butene) (PEB) (26 mol‐% butene copolymer) have been investigated using optical microscopy (OM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). An upper critical solution temperature of 162 °C was exhibited. The addition of PEB not only slowed the overall crystallization rate of LLDPE but also changed the distribution of lamellar thickness or perfection of LLDPE crystals. The equilibrium melting temperature of LLDPE in the blends was reduced and kept relatively constant in the bi‐phase state. The blends showed a single‐stage degradation and an intermediate thermal stability between those of the individual components. It could be attributed to their homogeneous states at degradation temperatures and the similar decomposing mechanisms of two components. The kinetic analysis of thermal degradation also confirmed the above results.

Phase diagram of LLDPE/PEB blends.  相似文献   


20.
Preparation of superhydrophobic silica‐based films via sol‐gel process by adding polyethylene glycol (PEG4000) in the silica sol precursor solution has been developed. The casting films were prepared by casting the above solution on the glass and adding poor solvent on it or not. Surface roughness of the films was obtained by removing polymer from the films at high temperature. Then, the hydrophobic group on the surfaces was obtained by reaction with hexamethyldisilazane (HMDS). Characteristic properties of the as‐prepared surface of the films were analyzed by contact angle measurement, scanning electron microscopy (SEM), atomic force microscope (AFM), Fourier transform infrared (FT‐IR) spectrophotometer, and X‐ray photoelectron spectrometer (XPS). The results showed that the contact angles of the films were varied with the PEG weight fraction of the films, the solvent for the PEG solution, the reaction temperature and time, and adding poor solvent (n‐hexane) or not. However, the surface roughness has been controlled by adjusting the experimental parameters during the early period. The contact angle of the film that prepared by spraying the poor solvent (n‐hexane) onto each coating layer for four times after casting process was greater than 150°. It was difficult to obtain superhydrophobic surface without adding n‐hexane onto any coating layer in this system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号