共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of melt structure on crystallization behavior of isotactic polypropylene nucleated with α/β compounded nucleating agents 下载免费PDF全文
Qiyan Zhang Zhengfang Chen Bing Wang Jinyao Chen Feng Yang Jian Kang Ya Cao Ming Xiang Huilin Li 《应用聚合物科学杂志》2015,132(4)
In this study, the melt structure of isotactic polypropylene (iPP) nucleated with α/β compounded nucleating agents (α/β‐CNA, composed of the α‐NA of 0.15 wt % Millad 3988 and the β‐NA of 0.05 wt % WBG‐II) was tuned by changing the fusion temperature Tf. In this way, the role of melt structure on the crystallization behavior and polymorphic composition of iPP were investigated by differential scanning calorimetry (DSC), wide‐angle X‐ray scattering (WAXD) and scanning electron microscopy (SEM). The results showed that when Tf = 200°C (iPP was fully molten), the α/β‐CNA cannot encourage β‐phase crystallization since the nucleation efficiency (NE) of the α‐NA 3988 was obviously higher than that of the β‐NA WBG‐II. Surprisingly, when Tf was in 179–167°C, an amount of ordered structures survived in the melt, resulting in significant increase of the proportion of β‐phase (achieving 74.9% at maximum), indicating that the ordered structures of iPP played determining role in β‐phase crystallization of iPP nucleated with the α/β‐CNA. Further investigation on iPP respectively nucleated with individual 3988 and WBG‐II showed that as Tf decreased from 200°C to 167°C, the crystallization peak temperature Tc of iPP/3988 stayed almost constant, while Tc of iPP/WBG‐II increased gradually when Tf < 189°C and became higher than that of iPP/3988 when Tf decreased to 179°C and lower, which can be used to explain the influence of ordered structure and α/β‐CNA on iPP crystallization. Using this method, the selection of α‐NA for α/β‐CNA can be greatly expanded even if the inherent NE of β‐NA is lower than that of the α‐NA. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41355. 相似文献
2.
A highly active and selective β‐nucleating agent for isotactic polypropylene and crystallization behavior of β‐nucleated isotactic polypropylene under rapid cooling 下载免费PDF全文
Shicheng Zhao Hanzhang Gong Xin Yu Zhong Xin Shibao Sun Shuai Zhou Yaoqi Shi 《应用聚合物科学杂志》2016,133(32)
Zinc adipate (Adi‐Zn) was observed to be a highly active and selective β‐nucleating agent for isotactic polypropylene (iPP). The effects of Adi‐Zn on the mechanical properties and the β‐crystals content of nucleated iPP were investigated. The impact strength of iPP nucleated with 0.2 wt % Adi‐Zn was 1.8 times higher than that of neat iPP. In addition, wide‐angle X‐ray diffraction analysis indicated that the content of β‐crystals in nucleated iPP (kβ value) reached 0.973 with 0.1 wt % Adi‐Zn, indicating that Adi‐Zn is a highly active and selective β‐nucleating agent for iPP. Furthermore, fast scanning chip calorimetry (FSC) studies using cooling rates from 60 to 13,800 °C min?1 revealed that the formation of β‐crystals significantly depended on the cooling rates. At cooling rates below 3000 °C min?1, only β‐crystals existed. However, at cooling rates above 6000 °C min?1, β‐crystals failed to form. Moreover, a lower critical crystallization temperature that corresponded to the generation of β‐crystals was investigated using cooling‐induced crystallization, and the results are in good agreement with those of a previous study. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43767. 相似文献
3.
Influences of pre‐ordered melt structures on the crystallization behavior and polymorphic composition of β‐nucleated isotactic polypropylene with different stereo‐defect distribution 下载免费PDF全文
As part of continuous efforts to understand the surprising synergetic effect between β‐nucleating agent and pre‐ordered structures of isotactic polypropylene (iPP) in significant enhancement of β‐crystallization (Ordered Structure Effect, OSE), two β‐nucleated iPP with different uniformities of stereo‐defect distribution (WPP‐A and WPP‐B) were prepared, their crystallization behaviors with variation of melt structures were studied in detail. The results revealed that β‐phase can hardly form in WPP‐A (whose stereo‐defect distribution is less uniform) because of its strong tendency of α‐nucleation caused by its less uniform stereo‐defect distribution, while WPP‐B is more favorable for β‐crystallization; As fusion temperature decreases, similar variation trends of crystallization temperature and β‐phase proportion can be observed from WPP‐A and WPP‐B, indicating the occurrence of OSE behavior, which provides unsurpassed β‐nucleation efficiency and induces β‐crystallization even in WPP‐A which is less favorable for β‐crystallization; moreover, the upper and lower limiting temperatures of Region II of WPP‐A and WPP‐B are identical, suggesting the uniformity of stereo‐defect distribution has little influence on temperature window for OSE (denoted as Region II). To explore the physical nature of Region II, self‐nucleation behavior and equilibrium melting temperature of PP‐A and PP‐B were studied. The lower limiting temperatures of exclusive self‐nucleation domain of both PP‐A and PP‐B are identical with the lower limiting temperatures of Region II in OSE (168°C); moreover, the Tm0 of both PP‐A and PP‐B are close to their upper limiting temperatures of Region II in OSE behavior (189°C). The possible explanation was proposed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42632. 相似文献
4.
Jian Kang Jingping Li Shaohua Chen Hongmei Peng Bin Wang Ya Cao Huilin Li Jinyao Chen Jinggang Gai Feng Yang Ming Xiang 《应用聚合物科学杂志》2013,129(5):2663-2670
Detailed characterization of the crystallization behavior is important for obtaining better structure property correlations of the isotactic polypropylene (iPP), however, attributed to the complexity in ZN‐iPP polymerization, the relationship between crystallization behavior and the stereo‐defect distribution of iPP is still under debate. In this study, the crystallization kinetics of the primary nucleation, crystal growth and overall crystallization of two iPP samples (PP‐A and PP‐B) with nearly same average isotacticity but different stereo‐defect distribution (the stereo‐defect distribution of PP‐B is more uniform than PP‐A) were investigated. The results of isothermal crystallization kinetics showed that the overall crystallization rate of PP‐A was much higher than that of PP‐B; but the analysis of self‐nucleation isothermal crystallization kinetics and the polarized optical microscopy (POM) observation indicated that the high overall crystallization rate of PP‐A was attributed to the high primary nucleation rate of the resin. The stereo‐defect distribution plays an important role in determining both the nucleation kinetics and crystal grow kinetics, and thus influence the overall crystallization kinetics. A more uniform distribution of stereo‐defects restrains the crystallization rate of iPP, moreover, it has more influence on nucleation kinetics, comparing with the crystal growth. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
5.
A highly novel nano‐CaCO3 supported β‐nucleating agent was employed to prepare β‐nucleated isotactic polypropylene (iPP) blend with polyamide (PA) 66, β‐nucleated iPP/PA66 blend, as well as its compatibilized version with maleic anhydride grafted PP (PP‐g‐MA), maleic anhydride grafted polyethylene‐octene (POE‐g‐MA), and polyethylene‐vinyl acetate (EVA‐g‐MA), respectively. Nonisothermal crystallization behavior and melting characteristics of β‐nucleated iPP and its blends were investigated by differential scanning calorimeter and wide angle X‐ray diffraction. Experimental results indicated that the crystallization temperature (T) of PP shifts to high temperature in the non‐nucleated PP/PA66 blends because of the α‐nucleating effect of PA66. T of PP and the β‐crystal content (Kβ) in β‐nucleated iPP/PA66 blends not only depended on the PA66 content, but also on the compatibilizer type. Addition of PP‐g‐MA and POE‐g‐MA into β‐nucleated iPP/PA66 blends increased the β‐crystal content; however, EVA‐g‐MA is not benefit for the formation of β‐crystal in the compatibilized β‐nucleated iPP/PA66 blend. It can be relative to the different interfacial interactions between PP and compatibilizers. The nonisothermal crystallization kinetics of PP in the blends was evaluated by Mo's method. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
6.
Unique crystallization behavior of isotactic polypropylene in the presence of l‐isoleucine and its inhibition and promotion mechanism of nucleation 下载免费PDF全文
l ‐Isoleucine (l ‐Ile) was identified as an efficient anti‐nucleating agent for isotactic polypropylene (iPP). At 0.08 wt %, l ‐Ile could significantly decrease the peak crystallization temperature (Tcp) of iPP by up to 8 °C at a cooling rate of 20 °C/min. Furthermore, l ‐Ile exhibited both anti‐nucleation and pro‐nucleation abilities; i.e., a low content of l ‐Ile inhibited iPP crystallization, whereas a high content promoted iPP crystallization. The unique crystallization behavior of iPP in the presence of l ‐Ile was investigated by differential scanning calorimetry, polarized optical microscopy (POM), and rheological measurement. According to POM, a low content of l ‐Ile completely dissolved in the iPP melt, whereas a high content of l ‐Ile did not. Therefore, a mechanism by which l ‐Ile inhibits and promotes the nucleation of iPP was proposed. Dissolving l ‐Ile molecules in the iPP melt hindered the homogeneous nucleation of iPP as a “dilution effect”; however, as the content increases, l ‐Ile could not be completely dissolved in molten iPP, and the residual crystals of l ‐Ile thus provided heterogeneous nucleation sites for iPP and further promoted its crystallization. Experimental evidence from rheology and POM supported this mechanism. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45956. 相似文献
7.
Correlation between the fracture toughness and β‐crystal fraction in a β‐nucleated propylene‐based propylene–ethylene random copolymer 下载免费PDF全文
Propylene‐based propylene–ethylene random copolymer (PPR) has been widely used in the production of hot‐water pipes. To further improve its toughness and thermal resistance, β‐nucleating agents (β‐NAs) are frequently incorporated. In this study, PPR containing 5.6 mol % ethylene units was modified by two kinds of β‐NAs, that is, calcium pimelate and N,N′‐dicyclohexylterephthalamide. The notched Izod impact strength of PPR increased with the addition of the β‐NAs. Drastically different toughening effects were found between the two β‐NAs. The structure of PPR with and without a β‐NA was investigated by calorimetry, X‐ray diffraction, and thermomechanical analysis. The results indicated that the relative fraction of β crystals (kβ) in the injection‐molded specimens was determined by the type and content of β‐NA. The relationship between kβ and the impact toughness was summarized. A critical value for kβ (0.68) was identified for the brittle–ductile transition of PPR. PPR with β‐NA having a kβ greater than 0.68 displayed a higher impact strength than the other mixtures. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42930. 相似文献
8.
Isothermal crystallization kinetics and subsequent melting behavior of β‐nucleated isotactic polypropylene/graphene oxide composites with different ordered structure 下载免费PDF全文
Yansong Yu Fangxinyu Zeng Jinyao Chen Jian Kang Feng Yang Ya Cao Ming Xiang 《Polymer International》2018,67(9):1212-1220
The effects of ordered structure on isothermal crystallization kinetics and subsequent melting behavior of β‐nucleated isotactic polypropylene/graphene oxide (iPP/GO) composites were studied using differential scanning calorimetry. The ordered structure status was controlled by tuning the fusion temperature (Tf). The results showed that depending on the variation of crystallization rate, the whole Tf range could be divided into three regions: Region I (Tf > 179 °C), Region II (170 °C ≤ Tf ≤ 179 °C) and Region III (Tf < 170 °C). As Tf decreased from Region I to Region III, the crystallization rate would increase substantially at two transition points, due to the variation of the ordered structure status. Calculation of Avrami exponent n indicated that the ordered structure induced the formation of two‐dimensional growing crystallites rather than three‐dimensional growing crystallites. Moreover, in the case of isothermal crystallization, the ordered structure effect (OSE) can also greatly increase the relative content of β‐phase (βc). In Region II, OSE took place, resulting in evident increase of βc, achieving 92.4% at maximum. The variation of the isothermal crystallization temperature (Tiso) had little influence on the Tf range (Region II) of the OSE. The higher Tf in Region II was more favorable for the formation of higher βc. The ordered structure was favorable for the improvement of the nucleating efficiency of β‐nucleating agent (β‐NE), and was more effective for the improvement of lower β‐NE. © 2018 Society of Chemical Industry 相似文献
9.
In this work, we reported calcium tetrahydrophthalate as a high efficient β‐nucleating agent (β‐NA) for impact‐resistant polypropylene copolymer (IPC). The relative fraction of the β‐crystal can reach as high as 93.5% when only 0.03% β‐NA is added. The non‐isothermal and isothermal crystallization behaviors, morphology, lamellar structure and mechanical properties of IPCs with various β‐NA contents were studied. During non‐isothermal crystallization, the cooling rate has an important influence on the relative fraction of the β‐crystal, which decreases remarkably as the cooling rate increases. The β‐NA also greatly accelerates crystallization rate of IPC, resulting from both more crystal nuclei and larger Avrami exponent. The small angle X‐ray scattering characterization shows that more amorphous components are included into the inter‐lamellae after addition of β‐NA. Dynamical mechanical analysis (DMA) reveals that the storage modulus at low temperature and the loss factor above 0 °C from the PP component can be enhanced upon addition of β‐NA and reach a maximum at the β‐NA content of 0.05 wt %. Impact test shows that the impact strength of the IPC at 0°C can be improved as much as 40% when the content of calcium tetrahydrophthalate is 0.10 wt %. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40753. 相似文献
10.
Investigation on the morphology and tensile behavior of β‐nucleated isotactic polypropylene with different stereo‐defect distribution 下载免费PDF全文
Hongmei Peng Bin Wang Jinggang Gai Jinyao Chen Feng Yang Ya Cao Huilin Li Jian Kang Ming Xiang 《应用聚合物科学杂志》2014,131(6)
Large amount of work has been published on the tacticity‐properties relationship of isotactic polypropylene (iPP). However, the stereo‐defect distribution dependence of morphology and mechanical properties of β‐nucleated iPP (β‐iPP) is still not clear. In this study, two different iPP resins (PP‐A and PP‐B) with similar average isotacticity but different uniformities of stereo‐defect distribution were selected, their β‐iPP injection molding specimens were prepared, and the morphology evolution and tensile behaviors were studied by means of differential scanning calorimetry (DSC), 2D wide‐angle X‐ray diffraction (2D‐WAXD) and scanning electron microscope (SEM). DSC results showed that with the same concentration of β‐nucleating agent (0.3 wt % WBG‐II), PP‐B with more uniform stereo‐defect distribution exhibited more amount of β‐phase than that of PP‐A with less uniform stereo‐defect distribution, indicating that PP‐B is more favorable for the formation of β‐phase. SEM results showed that PP‐B formed more amount of β‐crystals with relatively high structural perfection, while in PP‐A a mixed morphology of α‐ and β‐phase with obviously higher amount of structural imperfection emerges. The results of room‐temperature tensile test indicated that the yield peak width of PP‐B was obviously wider, and the elongation at break of PP‐B was higher than that of PP‐A, showing a better ductile of PP‐B. The morphology evolution results of SEM, 2D‐WAXD and DSC suggest that, a combination of lamellar deformation and amorphous deformation occurred in PP‐A, while only amorphous deformation mainly took place in PP‐B, which was thought to be the reason for the different tensile behaviors of the samples. In the production of β‐PP products via injection molding, the uniformity of stereo‐defect distribution was found to be an important factor. PP with more uniform distribution of stereo‐defect favors the formation of large amount of β‐phase with high perfection, which exhibit superior ductile property. The related mechanism was discussed. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40027. 相似文献
11.
Effects of melt structure on non‐isothermal crystallization behavior of isotactic polypropylene nucleated with α/β compounded nucleating agents 下载免费PDF全文
Qiyan Zhang Hongmei Peng Jian Kang Ya Cao Ming Xiang 《Polymer Engineering and Science》2017,57(9):989-997
In this study, the effects of melt structure (tuned by controlling the fusion temperature Tf) on non‐isothermal crystallization and subsequent melting behaviors of isotactic polypropylene (iPP) nucleated with α/β compounded nucleating agents (α/β‐CNAs) have been further investigated. The results show that under all cooling rates studied (2–40°C/min), the crystallization temperature on cooling curves increased gradually with decrease of Tf, meanwhile, when Tf was in temperature range of 166°C–179°C where ordered structures survived in the melt (defined as Region II), crystallization activation energy ΔE was found to be evidently lower compared with that when Tf > 179°C or Tf < 166°C. The results of subsequent heating showed that occurrence of Ordered Structure Effect can be observed at all the cooling rates studied; the location of the Region II was constant when cooling rate varied; Low cooling rate encouraged formation of more β‐phase triggered by ordered structure. Moreover, the role of ordered structure on β‐α recrystallization was comparatively studied by tuning the end temperature of recooling (Tend) after held at Tf, and it was found that ordered structure encouraged the formation of β‐phase with high thermal stability at low temperature part of Region II, while enhanced the β‐crystal with relatively low thermal stability at high temperature part of Region II. POLYM. ENG. SCI., 57:989–997, 2017. © 2016 Society of Plastics Engineers 相似文献
12.
The influence of a nonpigmenting β‐nucleating additive in the crystallization of isotactic polypropylene (iPP) is investigated by differential scanning calorimetry and X‐ray diffraction. It is found that this additive induces the formation of a very high level of the trigonal modification of iPP. The crystallization and melting behavior of the nucleated systems are studied as a function of the cooling and heating rates and the control of the final temperature during the cooling process. The nucleating agent exerts an important effect on the crystallization temperatures and the polymorphic transitions of iPP, delaying the β–α recrystallization process through an increase in the stability of the trigonal crystals. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 531–539, 2002 相似文献
13.
The non‐isothermal crystallization behavior, the crystallization kinetics, the crystallization activation energy and the morphology of isotactic polypropylene (iPP) with varying content of β‐nucleating agent were investigated using differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The DSC results showed that the Avrami equation modified by Jeziorny and a method developed by Mo and co‐workers could be successfully used to describe the non‐isothermal crystallization process of the nucleated iPPs. The values of n showed that the non‐isothermal crystallization of α‐ and β‐nucleated iPPs corresponded to a tridimensional growth with homogeneous and heterogeneous nucleation, respectively. The values of crystallization rate constant showed that the rate of crystallization decreased for iPPs with the addition of β‐nucleating agent. The crystallization activation energy increased with a small amount (less than 0.1 wt%) of β‐nucleating agent and decreased with higher concentration (more than 0.1 wt%). The changes of crystallization rate, crystallization time and crystallization activation energy of iPPs with varying contents of β‐nucleating agent were mainly determined by the ratio of the content of α‐ and β‐phase in iPP (α‐PP and β‐PP) from the DSC investigation, and the large size and many intercrossing lamellae between boundaries of β‐spherulites for iPPs with small amounts of β‐nucleating agent and the small size and few intercrossing bands among the boundaries of β‐spherulites for iPPs with large amounts of β‐nucleating agent from the SEM examination. Copyright © 2010 Society of Chemical Industry 相似文献
14.
Jian Kang Jingping Li Shaohua Chen Shipeng Zhu Huilin Li Ya Cao Feng Yang Ming Xiang 《应用聚合物科学杂志》2013,130(1):25-38
The influence of the hydrogenated petroleum resin P125 on the crystallization behavior, crystallization kinetics, and optical properties of polypropylene (PP) were investigated. The results of differential scanning calorimetry, successive self‐nucleation, and annealing fractionation demonstrated that P125 reduced the interaction between the PP molecules, decreased the crystallization, prevented PP from forming thick lamellae, and encouraged the formation of thin lamellae. The isothermal crystallization kinetics, self‐nucleation isothermal crystallization kinetics, and polarized optical microscopy observations showed that P125 slightly decreased the nucleation rate, significantly decreased the crystal growth rate, generally reduced the overall crystallization rate, and effectively deceased the crystallite sizes of PP. The optical properties studies showed that P125 effectively decreased the haze and increased the surface glossiness and yellowness index of PP. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
15.
Xiping Gao Zhigao Huang Huamin Zhou Yi Zhang Junjie Liang 《Polymer Engineering and Science》2017,57(2):172-182
It is widely believed that β ‐nucleating agent is beneficial for effectively toughening isotactic polypropylene (iPP). However, for the injection molding process, the shearing and thermo‐mechanical conditions make the nucleation and crystallization process complicated. In this paper, the effects of injection rate on crystallization of β ‐nucleated iPP were studied by scanning electron microscope (SEM), two‐dimensional wide‐angle X‐ray diffraction and differential scanning calorimetry (DSC). It is observed that with increasing injection rate, the content of β ‐crystals exhibits different tendencies in the skin, intermediate layers, and core zone. Specifically, for the intermediate layer, the β ‐crystals content first increases with increasing injection rate to 85 cm·s?1, and begins to decrease afterward. By simulating the injection process, the most likely explanation for the β ‐crystal change is the comparatively high shear rate and low shearing time that the melt experienced. Variations in β ‐form content are mainly responsible for the mechanical properties of β ‐nucleated iPP. The results of this study provide a valuable way to control the iPP toughness in the injection molding process. POLYM. ENG. SCI., 57:172–182, 2017. © 2016 Society of Plastics Engineers 相似文献
16.
Quiescent melt crystallization rates of various polyolefins including high density polyethylene (PE), isotactic form of polypropylene (PP), polybutene‐1 (PB1), and poly(4‐methyl pentene‐1) (P4MP1) were investigated under both isothermal and nonisothermal conditions using differential scanning calorimetry (DSC). The order of overall crystallization rates under quiescent conditions from fast to slow was found to be: PE, P4MP1, PP and PB1. The Avrami equation was used to analyze isothermal and nonisothermal crystallization processes, respectively. In order to compare relative crystallization rates of these polymers, continuous cooling transformation curves for each polymer under nonisothermal condition as well as the plot of crystallization half‐time as a function of crystallization temperature under isothermal conditions were constructed. Comparisons were made of the relative rate of crystallization of the different isotactic polyolefins with each other and with reports in the literature. Isotactic polyolefins with linear side groups crystallize increasingly more slowly as the side group lengthens with polypentene‐1 (PPT1) and polyhexene‐1 (PH1) crystallizing even more slowly than PB1. It is notable that P4MP1, which has isobutyl as a bulky side group, and apparently poly(3‐methyl butene‐1) (P3MB1) showed fairly high crystallization rates. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
17.
Seven dicarboxylates of calcium were synthesized. The effect of dicarboxylate on the formation of β‐form polypropylene was investigated by X‐ray diffraction. Calcium pimelate, calcium suberate, calcium phthalate, and calcium terephthalate have been found to be an effective β‐nucleator. The Kx values of the isotatic propylene samples with 0.5 wt % of the nucleators above are 0.95, 0.96, 0.93, and 0.62, respectively. Calcium succinate, calcium adipate, and calcium sebacate behave invalidly on the nucleating of the β‐phase. We conducted an investigation on the affect of particle shape, crystal form, and crystallinity upon the level of the β‐form. The X‐ray diffraction of the effective nucleators reveals a common character that their first reflection locate at the d‐spacing between 10 to 13 Å, indicating structural similarity of the nucleators with β‐polypropylene. The nucleation mechanism is explained by the cooperative effect of the nonpolar and polar part of nucleating agents in the crystallization of polypropylene. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 633–638, 2002 相似文献
18.
Xiaoxi Li Haiyan Wu Jingwei Chen Jinghui Yang Ting Huang Nan Zhang Yong Wang 《应用聚合物科学杂志》2012,126(3):1031-1043
As a substitute of isotactic polypropylene in applications requiring excellent fracture resistance, impact‐resistant polypropylene copolymer (IPC) has attracted much attention in recent years. In this study, a highly effective β‐form nucleating agent (β‐NA; an aryl amide compound) was introduced into IPC, and our attention was focused on the nonisothermal crystallization and subsequent melting behaviors of the nucleated samples. The nonisothermal crystallization behaviors were investigated on the basis of the different cooling rates and different concentrations of β‐NA with differential scanning calorimetry, wide‐angle X‐ray diffraction (WAXD), and polarized optical microscopy. The results show that both the cooling rate and concentration of β‐NA greatly determined the nonisothermal crystallization process and subsequent multiple melting behaviors. Further results show that the multiple melting behaviors were related to the transition in β crystallites and those between the β and α crystallites. The morphologies of the dispersed particles and the supermolecular structure of the matrix were characterized with scanning electron microscopy. Finally, the effect of the β‐NA concentration on the fracture resistance of IPC was evaluated by measurement of the notched Izod impact strength. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
19.
This article deals with the crystallization behaviors of original (prepared in a torque rheometer), DSC crystallization and mold crystallization (quenching and slow nonisothermal crystallization) of isotactic polypropylene (iPP) mixed with β‐form nucleating agent. The microstructure and thermal stability of these samples were investigated. The wide angle X‐ray diffraction (WAXD) results indicate that fast cooling is favorable for β‐form iPP formation. With slower cooling rate and higher concentration of nucleating agent, the lamellar thickness and stability of crystal0s were enhanced. Polarized optical microscopy (POM) and scanning electron microscopy (SEM) both showed that rapid crystallized samples gave rise to tiny spherulites, whereas under slow crystallization condition, nucleated samples could be fully developed in the form of dendritic or transcrystalline structures, depending on the nucleating agent concentration. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
20.
Calcium salts of suberic (Ca‐Sub) and pimelic (Ca‐Pim) acids were synthesized and implemented as in different grades of isotactic polypropylene (iPP). Propylene homopolymer, as well as random and block copolymers containing these additives, crystallized iPP into pure or nearly pure β modification in the isothermal and nonisothermal crystallization experiments. Recently, Ca‐Sub proved to be the most effective β‐nucleating agent of iPP. The Ca‐Sub nucleating agent widens the upper crystallization temperature range of pure β‐iPP formation up to 140°C. In this study the effect of the these additives on the crystallization, melting characteristics, and structure of the PP were studied. The degree of crystallinity of β‐iPP was markedly higher than that of α‐iPP. A widening in the melting peak of the samples crystallized in a high temperature range was first observed and discussed in regard to literature results of the same phenomenon for α‐iPP. The morphology of the β‐iPP samples was revealed by scanning electron microscopy. Independent of the type of polymer or nucleating agent, hedritic structures were found in the early stages of growth of the β‐spherulites. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2357–2368, 1999 相似文献