首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Damping in MREs is considered to be ascribed to viscous flow of the rubber matrix, interfacial damping at the interface between the magnetic particles and the matrix and magnetism induced damping. In this study, individual components in MREs that contribute to material damping were investigated. A model was developed to include viscous flow of the rubber matrix, interfacial damping and magnetism induced damping to give the total damping capacity of MREs ( )It was found that depends on frequency, iron sand content, strain amplitude and is independent of the applied magnetic field over saturation magnetization. The proposed model was assessed experimentally using a series of isotropic and anisotropic MREs. Comparison between tan δ with showed that matched the experimental trends with average percentage difference of 8.1% and 21.8% for MREs with modified iron sand unmodified iron sand, respectively. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43247.  相似文献   

2.
In this study, we focused on the synthesis, characterization, and adsorption capacity testing of aminated glycidyl methacrylate grafted rice husk (RH‐g‐GMA–Am). Our goal was to obtain a high‐performance surface for the adsorption of various anions. Glycidyl methacrylate grafted rice husk (RH‐g‐GMA) was prepared by the graft copolymerization of glycidyl methacrylate with rice husk; the product was further subjected to an amination reaction. The surface properties, sorption characteristic functional groups, isotherm and kinetic studies, pore diffusion models, and effects of the temperature and pH on the material properties were studied under batch conditions. The IR spectroscopy results show additional surface functional groups for RH‐g‐GMA–Am. The adsorptions of and on RH‐g‐GMA–Am were found to follow pseudo‐second‐order kinetics; this indicated a possible dominant role played by chemisorption. The rate‐limiting step for mass transfer was found to be boundary layer diffusion. Furthermore, the sorption isotherms for and fit the Langmuir model. The amination of RH‐g‐GMA drastically increased the removal efficiency from 3 to 82% and from 6 to 93% for and , respectively. Moreover, RH‐g‐GMA–Am exhibited a better removal efficiency in the pH range of 4–6.5. Regeneration studies revealed that the surface of RH‐g‐GMA–Am could be regenerated repetitively by simple acid washing with an insignificant decrease in the active surface for consecutive adsorptions. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43002.  相似文献   

3.
The profiles of PLA/PVA filament parameters (e.g., temperature, velocity, tensile stress, and apparent elongational viscosity) along the spinline in the low‐speed melt spinning process under various spinning conditions were investigated. Owing to the combination of the filament velocity and filament temperature measurements using laser doppler velocimetry (LDV) and infrared thermography, respectively, the fiber formation zone was determined. The length of the fiber formation zone obtained from filament velocity profiles is always shorter than that obtained from the filament temperature profiles ( . Obviously, this unexpected phenomenon occurs for low spinning speeds due to the axial heat conduction effect of the filament along the spinline and the nonuniform radial temperature distribution through the cross‐sectional thick filament. Another remarkable finding is related to the Nusselt number which has been found as nearly constant along the spinline in the low‐speed melt spinning process. Thus, mathematical simulations of the filament temperature profiles will be simplified drastically. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44258.  相似文献   

4.
The nucleation parameter Kg of filled PP, HDPE, and PA6 is determined through nonisothermal DSC measurements. A novel method is proposed for the determination of the size distribution of critical nuclei, where the most commonly found fraction was obtained as a peak value. The models are tested at different cooling rates and different filler loadings. Kg varies up to a certain cooling rate and afterwards remains constant. The introduction of talc in PP and HDPE facilitates nucleation and thus reduces Kg. An opposite trend occurs upon the addition of bentonite in PA6. The changes of Kg and are reflected on sample morphology, as confirmed with SAXS. The ratio between the final crystal thickness and amounts to approx. 2 and thus agrees well with the one listed in literature. The simple linear correlations of the obtained Kg are established with Young's modulus and yield stress. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41433.  相似文献   

5.
This article presents an experimental study on the shape memory behavior of blends of thermoplastic polyurethane (TPU) and biodegradable polylactic acid (PLA) at the PLA/TPU weight ratios of 70/30 (PT7030) and 50/50 (PT5050). The manufactured springs were studied comprehensively based on their morphological and thermal properties. Scanning electron microscopy micrographs were captured, which verified that TPU was compatible with PLA. The wide‐angle X‐ray diffraction suggested that the crystallinity of PLA was enhanced in the presence of TPU. In order to determine the shape recovery properties [shape recovery ratio (Rr), shape fixing ratio (Rf), and shape recovery force (Fr)], the samples programmed at three different temperatures (Tp) of 70, 80, and 90 ° and at various recovery temperatures (Tr) over 40 to 90 ° , were studied. In general, the spring made with PT7030 showed higher Rr, Rf, and Fr values. The highest Rr (99%) was obtained at programmed temperature (Tp) of 70 ° and recovery temperature (Tr) of 90 ° . However, the Rr value for this spring programmed at 70 ° and recovered near body temperature was 50% with Fr of 1.4 N. Furthermore, the highest Fr (15.6 N) was observed in the spring made of PT7030 programmed at 80 ° and recovered at Tr of 78 ° . © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45115.  相似文献   

6.
The preparation of nonwoven mats of electrospun poly(lactic acid)/polyaniline (PANI) blend nanofibers faces some critical challenges that will be addressed in the present work. The challenges are in achieving high and adjustable content of PANI while keeping the spinnable solution nonagglomerated with no need to further filtration that might lead to wrong estimation of PANI content in the mat. We report an unprecedented content of 40% wt of PANI that is achieved using a new two‐step procedure. It is based on: (1) the preparation of the spinnable solution from a friable nonagglomerated and readily dispersible PANI: ‐TSA powder and (2) the use of an optimized mixture of ‐cresol/dichloromethane. The obtained nanofiber mats are characterized by FTIR and UV–vis spectroscopy. The morphology and the thermal stability of the nanofibers are investigated by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The amorphous structure of the nanofibers is verified using XRD measurements. The DC‐conductivity of these blend nanofibers is found to be far larger than the published DC‐conductivity values for blend nanofibers of PANI with PLLA or with other polymers. This is attributed to the high content of PANI in the blend and to the role played by ‐cresol as a secondary dopant. The investigation of the aging effect on the DC‐conductivity reveals an exponential decrease with a characteristic time of weeks. The electrical impedance spectroscopy (EIS) shows a pure ohmic behavior of the blend mat. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43687.  相似文献   

7.
Polymercaptanized soybean oil (PMSO), the product of a thiol‐ene reaction between soybean oil and hydrogen sulfide, is a material of interest as a lubricant additive and polymer precursor. We investigated with gel permeation chromatography, nuclear magnetic resonance (one‐dimensional and two‐dimensional), gas chromatography–mass spectrometry, and viscometry the changes that occur with PMSO upon heating or ultraviolet irradiation. The observed changes were due to a further thiol‐ene reaction between the thiol groups and the residual unsaturation. The formation of oligomers was a result of new sulfide bridges. Additionally, tetrahydrothiophene moieties were detected. An almost linear increase of the average molecular weight (MW) and the polydispersity index (PDI) was observed upon heat treatment [number‐average MW ( ) = 1180 Da, PDI = 1.32 for PMSO, = 1720 Da, PDI = 2.17 for PMSO that was heated for 1000 h at 130 °C]. PDI correlated best with the z‐average MW. The was the best predictor of the viscosity. For samples with close , the higher PDI corresponded to a higher viscosity index. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46150.  相似文献   

8.
This is a first report of the synthesis and characterization of acrylic copolymers from methyl methacrylate (MMA) and butyl acrylate (BA) with hyperbranched architecture. The copolymers were synthesized using a free radical polymerization (Strathclyde method) in emulsion technique. Divinyl benzene was used as the brancher which acted as a comonomer and 1‐dodecanethiol was used as a chain terminating agent. A linear copolymer from MMA and BA was also synthesized for comparison. The hyperbranched architecture was established from spectroscopic and rheological measurements. The gel permeation chromatography showed all hyperbranched copolymers were low molecular weight with lower polydispersity index (PDI) ( 23,000, PDI ~ 2.00) compared to the linear grade ( 93,000, PDI ~ 2.20). They were more spherical and achieved lower viscosity (yet higher solubility, >90%) than the linear grade (<50%) which was mostly open ended. Lower viscosity at equivalent solid content made the hyperbranched polymers a potential binder for adhesive and coating application. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45356.  相似文献   

9.
In this work, we have investigated the electrical properties of Au/n‐InP contacts with a thin layer of polyvinyl alcohol (PVA) as an interlayer. The current–voltage (IV) and capacitance–voltage (CV) measurements are carried out in the temperature range of 175–425 K. The Au/PVA/n‐InP Schottky structure show nonideal behaviors and indicates the presence of a nonuniform distribution of interface states. The temperature dependent interface states densities (NSS), ideality factor and barrier height are obtained. An abnormal decrease in zero‐bias barrier height (BH) and increase in the ideality factor ( ) with decreasing temperature have been explained on the basis of the thermionic emission theory with Gaussian distribution (GD) of the BHs due to the BH inhomogeneities. The experimental IV characteristics of Au/PVA/n‐InP Schottky diode has revealed the existence of a double GD with mean BH values of ( ) of 1.246 and 0.899 eV and standard deviation ( ) of 0.176 and 0.137 V, respectively. Consequently, the modified conventional activation energy versus plot gives and Richardson constants ( ) and the values are 1.17 and 0.71 eV and 9.9 and 6.9 A/cm2 K2, respectively, without using the temperature coefficient of the BH. The effective Richardson constant value of 9.9 A/cm2 K2 is very close to the theoretical value of 9.4 A/cm2 K2 for n‐InP. The discrepancy between Schottky barrier heights estimated from IV and CV measurements is also discussed. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39773.  相似文献   

10.
In this study, we reported a new BaTiO3–Na0.5Bi0.5TiO3–Nb2O5–Mn2O3/Fe2O3/Co3O4/In2O3 X8R system with high dielectric constant (>2100) at room temperature. The impacts of oxygen vacancy ( ) on dielectric, electrical conductivity, and ferroelectric properties were systematically studied. The Curie point is largely depended on the concentration, which can be confirmed by the dielectric behavior and A1g octahedral breathing modes in Raman spectrum. In addition, the activation energy of diffusion is greatly reduced with the increase in concentration. It was found that the remnant polarization and coercive field were both decreased with increasing concentration, due to the facilitated defect dipoles reorientation and domain switching.  相似文献   

11.
We present the first‐principles investigation of (x ≤ 0.375). Controllable thermal expansion of is achieved by different Ti contents. The negative thermal expansion (NTE) behavior is weakened gradually with increasing Ti content, which is consistent with experimental measurements. The Jahn–Teller effect plays an important role in the cubic‐to‐rhombohedral phase transition, which stems from the enhanced energy stability when the 3d orbitals of cation split into triply degenerate and sets. The unusual thermal stiffening of is found, which is similar to that of and but contrary to other NTE materials.  相似文献   

12.
Two TiCl4/Di/MgCl2 type supported Ziegler–Natta catalysts were prepared by loading dibutylphthalate or dicyclopentyldimethoxysilane (DCPDMS) (internal donor, Di) and TiCl4 on activated δ‐MgCl2 in sequence, and a blank catalyst was prepared by loading TiCl4 on the same δ‐MgCl2 without adding Di. These catalysts have similar specific surface area and pore size distribution, thus form a suitable base for comparative studies. Propylene polymerization with the catalysts was conducted in n‐heptane slurry using triethylaluminum (TEA) as cocatalyst, and the effects of Di as well as De (external donor, in this work it was DCPDMS) on the number of active centers, the distribution of active centers among three polypropylene (PP) fractions (isotactic, medium isotactic, and atactic PP chains), and chain propagation rate constants of the PP fractions were studied by counting the number of active centers in the PP fractions using a method based on selective quench‐labeling of the propagation chains by 2‐thiophenecarbonyl chloride. When De was not added in the polymerization, introducing a phthalate type Di in the catalyst evidently changed the active center distribution by enhancing the proportion of active centers producing isotactic PP (iPP) ( ), but scarcely changed reactivities of the three groups of active centers forming the three fractions. When the De was added in the polymerization system with TiCl4/phthalate/MgCl2 catalyst, further shifting of active center distribution in favor of took place, meanwhile reactivities of the three groups of active centers also remarkably changed in favor of . Mutual effects of these changes led to overwhelming dominance of iPP production in the TiCl4/Di/MgCl2–TEA/De system (Di = phthalate, De = alkoxysilane). In contrast, though using alkoxysilane as Di also caused shifting of active center distribution in favor of when De was not added, addition of alkoxysilane De caused reverse shifting of active center distribution in favor of those producing PP of lower stereoregularity. This unfavorable change largely counteracted the reactivity changes in favor of caused by the De, rendering the catalytic system rather poor isospecificity. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46605.  相似文献   

13.
High performance polymer blend of poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) was examined for their free volume behavior at different compositions of PEI using positron annihilation lifetime spectroscopy (PALS). The damping property of the blend was studied using tan‐δ obtained from dynamic mechanical thermal analysis (DMTA). The dependence of tan‐δ on temperature revealed that the blend is miscible in all compositions, in agreement with earlier studies. The tan‐δ peak height is found to increase with increase in free volume fraction for the entire blend composition signifying that the free volume plays an imperative role in understanding the damping property. Using DMTA, master curves were obtained at a reference temperature T0 by applying the time‐temperature‐superposition (TTS) using Williams‐Landel‐Ferry (WLF) relationship. From the shift factor aT, the WLF coefficients and were evaluated, using which the free volume fraction was found. Both PALS and DMTA methods were found to give similar results for the dependence of free volume for various PEI contents studied in this blend. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42961.  相似文献   

14.
The oxygen permeability of polycrystalline α‐alumina wafers, which served as models for alumina scales on alumina‐forming alloys, under steep oxygen potential gradients () was evaluated at 1873 K. Oxygen permeation occurred by the grain‐boundary (GB) diffusion of oxygen from the higher‐oxygen‐partial‐pressure () surface to the lower‐ surface, along with the simultaneous GB diffusion of aluminum in the opposite direction. The fluxes of oxygen and aluminum at the outflow side of the wafer were significantly larger than at the inflow side. Furthermore, Lu and Hf segregation at the GBs selectively reduced the mobility of oxygen and aluminum, respectively. A wafer with a bilayer structure, in which a Lu‐doped layer was exposed to a lower and an Hf‐doped layer was exposed to a higher , decreased the oxygen permeability. When the sign of was reversed, however, the oxygen permeability of the wafer was comparable to that of a nondoped wafer. Co‐doping with both Lu and Hf markedly increased the oxygen permeation, presumably because the Lu‐stabilized HfO2 particles that were segregated at the GBs acted as extremely fast diffusion paths for oxygen through the large number of oxygen vacancies introduced by the solid solution of Lu in the particles.  相似文献   

15.
Borax (Na2B4O7, 10.5% Boron) loaded CMC‐g‐cl‐poly(AAm) hydrogel composites were prepared by in situ grafting of acrylamide on to sodium carboxymethyl cellulose in the presence of borax by free radical polymerization technique to develop slow boron (B) delivery device. The composition, morphology, and mechanical properties of synthesized composites were studied by X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, texture analyser, and dynamic shear rheometer. Characterization revealed formation of borate ion ( ) from borax during polymerization reaction leading to extensive crosslinking of cellulosic chains and generation of mechanically strong composite hydrogels. Dynamic release of from the synthesized composites hydrogels followed Fickian diffusion mechanism and composites with high mechanical strength resulted in slow release of B. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43969.  相似文献   

16.
Dispersion polymerizations of methyl methacrylate in supercritical carbon dioxide were conducted with three types of comblike fluorinate polymer stabilizers: poly(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10‐heptadecafluorodecyl methacrylate) (PHDFDMA), poly(3,3,4,4,5,5,6,6,7,7,8,8,8‐tridecafluorooctyl methacrylate) (PTDFOMA), and poly(2,2,3,3,3‐pentafluoropropyl methacrylate) (PPFPMA). The effect of the polymerization pressure was not significant on the mean diameters of the poly(methyl methacrylate) (PMMA) particles from 20 to 40 MPa. However, the coefficients of variation of the particle diameters produced at 20 MPa ( , where is the number‐basis mean particle diameter), where the heterogeneous phase was found before polymerization, were larger than those produced at 30 and 40 MPa, where the homogeneous phase was found. The mean size of the PMMA obtained with PTDFOMA and PPFPMA strongly depended on the stabilizer concentration compared with that obtained with PHDFDMA. Moreover, the mean size decreased as the carbon dioxide‐philic side chain length increased. As shown by the results of this study, the best stabilizer among the three types of stabilizers for producing PMMA particles was PHDFDMA. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43813.  相似文献   

17.
Poly(vinyl alcohol)s (PVA) with high and low molecular weights were chemically modified by introducing acetaldehyde onto the polymer backbone to induce thermal‐responsive properties. The influence of both molecular weight ( ) and acetalization degree on the lower critical solution temperature (LCST) of thermo‐sensitive polymer was investigated. Moreover, a temperature responsive hydrogel was prepared by controlled cross‐linking of acetalized poly(vinyl alcohol) (APVA) and glutaraldehyde. As a model drug, ciprofloxacin was introduced into the prepared thermal sensitive hydrogel to reveal the drug loading and release behaviors. The structure, thermo‐sensitivity, swelling/deswelling kinetics, morphology, and drug loading/release behaviors were also investigated. The results indicated that the APVA polymer solution exhibited temperature responsivity, and APVA with high acetalization degree showed low LCST, whereas those with high PVAs showed high LCST. Meanwhile, morphology study was identical with the swelling/de‐swelling behavior. The loading and release of ciprofloxacin were controllable. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39720.  相似文献   

18.
AV‐17(Cr) material was prepared by modifying a commercial polymer AV‐17 (initially bearing R4N+ functional groups) with Cr(III) compounds was investigated. Comparative isotherms characterizing the and ion sorption from solution with pH values of 3 and 8, respectively, at 19°C and 60°C, were obtained using the raw AV‐17(Cl) and the modified AV‐17(Cr) material. The sorption process on AV‐17(Cr) takes place through the coordination of Cr(VI) ions with Cr(III) ions, while on AV‐17(Cl) it is due to an ion exchange mechanism. The sorption isotherms obtained in pH 8 solutions fit perfectly the Langmuir model. The thermodynamic functions ΔG, ΔH, and ΔS characteristic to the adsorption of ions from K2CrO4 solutions with pH = 8 were calculated. The active sites belonging to the AV‐17(Cr) material were identified as jarosite type compounds of Cr(III). SEM images show that the Cr(III) compounds are present in the form of ultrafine particles located on the surface and within the bulk phase of the polymer granules. Comparative thermal degradation process of both the AV‐17(Cr) and the AV‐17(Cl) material was conducted in air and in an inert atmosphere (He). The thermal degradation mechanism of sorbent AV‐17(Cr) and exchanger AV‐17(Cl) is proposed. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41306.  相似文献   

19.
Boiling of a pure fluid inside the rotor–stator cavities of a stator–rotor–stator spinning disc reactor (srs‐SDR) is studied, as a function of rotational velocity ω, average temperature driving force and mass flow rate . The average boiling heat transfer coefficient hb increases a factor 3 by increasing ω up to 105 rad s?1, independently of and . The performance of the srs‐SDR, in terms of hb vs. specific energy input ?, is similar to tubular boiling, where pressure drop provides the energy input. The srs‐SDR enables operation at Wm , yielding values of hb not practically obtainable in passive evaporators, due to prohibitively high pressure drops required. Since hb is increased independently of the superficial vapor velocity, hb is not a function of and the local vapor fraction. Therefore, the srs‐SDR enables a higher degree of control and flexibility of the boiling process, compared to passive flow boiling. © 2016 American Institute of Chemical Engineers AIChE J, 62: 3763–3773, 2016  相似文献   

20.
A polymeric gas separation membrane utilizing polybenzimidazole based on 4,4′‐(hexafluoroisopropylidene)bis(benzoic acid) was prepared. The synthesized membrane has an effective permeating area of 8.3 cm2 and a thickness of 30 ± 2 µm. Gas permeation properties of the membrane were determined using H2, CO2, CO, and N2 at temperatures ranging from 24°C to 200°C. The PBI‐HFA membranes not only exhibited excellent H2 permeability, but it also displayed superior gas separation performance particularly for H2/N2 and H2/CO2. The permeation parameters for both permeability and selectivity [ and α(H2/N2); and α(H2/CO2)] obtained for the new material were found to be dependent on trans‐membrane pressure difference as well as temperature, and were found to surpass those reported by Robeson in 2008. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42371.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号