首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Geminiviruses are plant viruses with circular single-stranded DNA (ssDNA) genomes encapsidated in double icosahedral particles. Tomato leaf curl geminivirus (ToLCV) requires coat protein (CP) for the accumulation of ssDNA in protoplasts and in plants but not for systemic infection and symptom development in plants. In the absence of CP, infected protoplasts accumulate reduced levels of ssDNA and increased amounts of double-stranded DNA (dsDNA), compared to accumulation in the presence of wild-type virus. To determine whether the gene 5 protein (g5p), a ssDNA binding protein from Escherichia coli phage M13, could restore the accumulation of ssDNA, ToLCV that lacked the CP gene was modified to express g5p or g5p fused to the N-terminal 66 amino acids of CP (CP66:6G:g5). The modified viruses led to the accumulation of wild-type levels of ssDNA and high levels of dsDNA. The accumulation of ssDNA was apparently due to stable binding of g5p to viral ssDNA. The high levels of dsDNA accumulation during infections with the modified viruses suggested a direct role for CP in viral DNA replication. ToLCV that produced the CP66:6G:g5 protein did not spread efficiently in Nicotiana benthamiana plants, and inoculated plants developed only very mild symptoms. In infected protoplasts, the CP66:6G:g5 protein was immunolocalized to nuclei. We propose that the fusion protein interferes with the function of the BV1 movement protein and thereby prevents spread of the infection.  相似文献   

2.
Tyrosine 34 is a prominent and conserved residue in the active site of the manganese superoxide dismutases in organisms from bacteria to man. We have prepared the mutant containing the replacement Tyr 34 --> Phe (Y34F) in human manganese superoxide dismutase (hMnSOD) and crystallized it in two different crystal forms, orthorhombic and hexagonal. Crystal structures of hMnSOD Y34F have been solved to 1.9 A resolution in a hexagonal crystal form, denoted as Y34Fhex, and to 2.2 A resolution in an orthorhombic crystal form, denoted as Y34Fortho. Both crystal forms give structures that are closely superimposable with that of wild-type hMnSOD, with the phenyl rings of Tyr 34 in the wild type and Phe 34 in the mutant very similar in orientation. Therefore, in Y34F, a hydrogen-bonded relay that links the metal-bound hydroxyl to ordered solvent (Mn-OH to Gln 143 to Tyr 34 to H2O to His 30) is broken. Surprisingly, the loss of the Tyr 34 hydrogen bonds resulted in large increases in stability (measured by Tm), suggesting that the Tyr 34 hydroxyl does not play a role in stabilizing active-site architecture. The functional role of the side chain hydroxyl of Tyr 34 can be evaluated by comparison of the Y34F mutant with the wild-type hMnSOD. Both wild-type and Y34F had kcat/Km near 10(9) M-1 s-1, close to diffusion-controlled; however, Y34F showed kcat for maximal catalysis smaller by 10-fold than the wild type. In addition, the mutant Y34F was more susceptible to product inhibition by peroxide than the wild-type enzyme. This activity profile and the breaking of the hydrogen-bonding chain at the active site caused by the replacement Tyr 34 --> Phe suggest that Tyr 34 is a proton donor for O2* - reduction to H2O2 or is involved indirectly by orienting solvent or other residues for proton transfer. Up to 100 mM buffers in solution failed to enhance catalysis by either Y34F or the wild-type hMnSOD, suggesting that protonation from solution cannot enhance the release of the inhibiting bound peroxide ion, likely reflecting the enclosure of the active site by conserved residues as shown by the X-ray structures. The increased thermostability of the mutant Y34F and equal diffusion-controlled activity of Y34F and wild-type enzymes with normal superoxide levels suggest that evolutionary conservation of active-site residues in metalloenzymes reflects constraints from extreme rather than average cellular conditions. This new hypothesis that extreme rather than normal substrate concentrations are a powerful constraint on residue conservation may apply most strongly to enzyme defenses where the ability to meet extreme conditions directly affects cell survival.  相似文献   

3.
CD59 is a plasma membrane-anchored glycoprotein that serves to protect human cells from lysis by the C5b-9 complex of complement. The immunodominant epitopes of CD59 are known to be sensitive to disruption of native tertiary structure, complicating immunological measurement of expressed mutant constructs for structure function analysis. In order to quantify cell-surface expression of wild-type and mutant forms of this complement inhibitor, independent of CD59 antigen, an 11-residue peptide (TAG) recognized by monoclonal antibody (mAb) 9E10 was inserted before the N-terminal codon (L1) of mature CD59, in a pcDNA3 expression plasmid. SV-T2 cells were transfected with this plasmid, yielding cell lines expressing 0 to > 10(5) CD59/cell. The TAG-CD59 fusion protein was confirmed to be GPI-anchored, N-glycosylated and showed identical complement-inhibitory function to wild-type CD59, lacking the TAG peptide sequence. Using this construct, the contribution of each of four surface-localized aromatic residues (4Y, 47F, 61Y, and 62Y) to CD59's complement-inhibitory function was examined. These assays revealed normal surface expression with complete loss of complement-inhibitory function in the 4Y --> S, 47F --> G and 61Y --> S mutants. By contrast, 62Y --> S mutants retained approximately 40% of function of wild-type CD59. These studies confirmed the utility of the TAG-CD59 construct for quantifying CD59 surface expression and activity, and implicate surface aromatic residues 4Y, 47F, 61Y and 62Y as essential to maintenance of CD59's normal complement-regulatory function.  相似文献   

4.
The enzymatic properties and the three-dimensional structure of spinach glycolate oxidase which has the active-site Tyr129 replaced by Phe (Y129F glycolate oxidase) has been studied. The structure of the mutant is unperturbed which facilitates interpretation of the biochemical data. Y129F glycolate oxidase has an absorbance spectrum with maxima at 364 and 450 nm (epsilon max = 11400 M-1 cm-1). The spectrum indicates that the flavin is in its normal protonated form, i.e. the Y129F mutant does not lower the pKa of the N(3) of oxidized flavin as does the wild-type enzyme [Macheroux, P., Massey, V., Thiele, D. J., and Volokita, M. (1991) Biochemistry 30, 4612-4619]. This was confirmed by a pH titration of Y129F glycolate oxidase which showed that the pKa is above pH 9. In contrast to wild-type glycolate oxidase, oxalate does not perturb the absorbance spectrum of Y129F glycolate oxidase. Moreover oxalate does not inhibit the enzymatic activity of the mutant enzyme. Typical features of wild-type glycolate oxidase that are related to a positively charged lysine side chain near the flavin N(1)-C(2 = O), such as stabilization of the anionic flavin semiquinone and formation of tight N(5)-sulfite adducts, are all conserved in the Y129F mutant protein. Y129F glycolate oxidase exhibited about 3.5% of the wild-type activity. The lower turnover number for the mutant of 0.74 s-1 versus 20 s-1 for the wild-type enzyme amounts to an increase of the energy of the transition state of about 7.8 kJ/mol. Steady-state analysis gave Km values of 1.5 mM and 7 microM for glycolate and oxygen, respectively. The Km for glycolate is slightly higher than that found for wild-type glycolate oxidase (1 mM) whereas the Km for oxygen is much lower. As was the case for wild-type glycolate oxidase, reduction was found to be the rate-limiting step in catalysis, with a rate of 0.63 s-1. The kinetic properties of Y129F glycolate oxidase provide evidence that the main function of the hydroxyl group of Tyr129 is the stabilization of the transition state.  相似文献   

5.
Interactions of rat DNA polymerase beta with a single-stranded (ss) DNA have been studied using the quantitative fluorescence titration technique. Examination of the fluorescence changes accompanying the binding, as a function of the thermodynamically rigorous binding density of rat pol beta-ssDNA complexes, reveals the existence of two binding phases. In the first high affinity phase, rat pol beta forms a complex with the ssDNA in which 16 nucleotides are occluded by the enzyme. In the second low affinity phase, a transition to a complex where the polymerase occludes only five nucleotides occurs. Thus, the data show that rat pol beta binds the ssDNA in two binding modes which differ in the number of occluded nucleotides. We designate the first complex as the (pol beta)16 binding mode and the second as the (pol beta)5 binding mode. The formation of the (pol beta)16 and (pol beta)5 modes has been fully confirmed in experiments with short ssDNA oligomers, a 16mer which can form either the (pol beta)16 or the (pol beta)5 mode, and a 10mer which can form only the (pol beta)5 mode. Binding of rat pol beta to the ssDNA has been analyzed using a statistical thermodynamic model which accounts for the existence of the two binding modes, cooperative interactions, and the overlap of potential binding sites. The results indicate that the 8 kDa domain of the enzyme is involved in ssDNA binding in both modes. Binding studies show that an isolated 8 kDa domain has the same intrinsic affinity for the ssDNA as the entire intact enzyme in its (pol beta)5 mode. However, the site size of the 8 kDa domain-ssDNA complex is ten nucleotides, suggesting that the formation of the (pol beta)5 mode is accompanied by a significant conformational transition of the intact protein. A higher intrinsic affinity, a higher net number of ions released, and a lower fluorescence change accompanying the formation of the (pol beta)16 than the (pol beta)5 mode indicate that the 31 kDa catalytic domain of the enzyme interacts with the ssDNA only in the (pol beta)16 mode. The significance of these results for understanding the functioning of rat pol beta in the DNA metabolism is discussed.  相似文献   

6.
Interactions between the human DNA polymerase beta (pol beta) and a single-stranded (ss) DNA have been studied using the quantitative fluorescence titration technique. Examination of the fluorescence increase of the poly(dA) etheno-derivative (poly(depsilonA)) as a function of the binding density of pol beta-nucleic acid complexes reveals the existence of two binding phases. In the first high affinity phase, pol beta forms a complex with a ssDNA in which 16 nucleotides are occluded by the enzyme. In the second phase, transition to a complex where the polymerase occludes only 5 nucleotides occurs. Thus, human pol beta binds a ssDNA in two binding modes, which differ in the number of occluded nucleotide residues. We designate the first complex as (pol beta)16 and the second as (pol beta)5 binding modes. The analyses of the enzyme binding to ssDNA have been performed using statistical thermodynamic models, which account for the existence of the two binding modes of the enzyme, cooperative interactions, and the overlap of potential binding sites. The importance of the discovery that human pol beta binds a ssDNA, using different binding modes, for the possible mechanistic model of the functioning of human pol beta, is discussed.  相似文献   

7.
The high-affinity streptavidin-biotin complex is characterized by an extensive hydrogen-bonding network. A study of hydrogen-bonding energetics at the ureido oxygen of biotin has been conducted with site-directed mutations at Asn 23, Ser 27, and Tyr 43. A new competitive biotin binding assay was developed to provide direct equilibrium measurements of the alterations in Kd. S27A, Y43F, Y43A, N23A, and N23E mutants display DeltaDeltaG degrees at 37 degrees C relative to wild-type streptavidin of 2.9, 1.2, 2.6, 3.5, and 2.6 kcal/mol, respectively. The equilibrium-binding enthalpies for all of the mutants were measured by isothermal titration calorimetry, and the Y43A and N23A mutants display large decreases in the equilibrium binding enthalpy at 25 degrees C of 8.9 and 6.9 kcal/mol, respectively. The S27A and N23E mutants displayed small decreases in binding enthalpy of 1.6 and 0.9 kcal/mol relative to wild-type, while the Y43F mutant displayed a -2.6 kcal/mol increase in the binding enthalpy at 25 degrees C. At 37 degrees C, the Y43A and N23A mutants display decreases of 7.8 and 7.9 kcal/mol, respectively, while the S27A, N23E, and Y43F mutants displayed decreases of 4.9, 3.7, and 1.2 kcal/mol relative to wild-type. Kinetic analyses were also conducted to probe the contributions of the hydrogen bonds to the activation barrier. Wild-type streptavidin at 37 degrees C displays a koff of (4.1 +/- 0.3) x 10(-5) s-1, and the conservative Y43F, S27A, and N23A mutants displayed increases in koff to (20 +/- 1) x 10(-5) s-1, (660 +/- 40) x 10(-5) s-1, and (1030 +/- 220) x 10(-)5 s-1, respectively. The Y43A and N23E mutants displayed 93-fold and 188-fold increases in koff, respectively. Activation energies and enthalpies for each of the mutants were determined by transition-state analysis of the dissociation rate temperature dependence. All of the mutants except Y43F display large reductions in the activation enthalpy. The Y43F mutant has a more positive activation enthalpy, and thus a more favorable activation entropy that underlies the overall reduction in the activation barrier. For the most conservative mutant at each ureido oxygen hydrogen-bonding position, bound-state alterations account for most of the energetic changes in a single transition-state model, suggesting that the ureido oxygen hydrogen-bonding interactions are broken in the dissociation transition state.  相似文献   

8.
Tyrosine is known to quench the phosphorescence of free tryptophan derivatives in solution, but the interaction between tryptophan residues in proteins and neighboring tyrosine side chains has not yet been demonstrated. This report examines the potential role of Y283 in quenching the phosphorescence emission of W310 of glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus by comparing the phosphorescence characteristics of the wild-type enzyme to that of appositely designed mutants in which either the second tryptophan residue, W84, is replaced with phenylalanine or Y283 is replaced by valine. Phosphorescence spectra and lifetimes in polyol/buffer low-temperature glasses demonstrate that W310, in both wild-type and W84F (Trp84-->Phe) mutant proteins, is already quenched in viscous low-temperature solutions, before the onset of major structural fluctuations in the macromolecule, an anomalous quenching that is abolished with the mutation Y283V (Tyr283-->Val). In buffer at ambient temperature, the effect of replacing Y283 with valine on the phosphorescence of W310 is to lengthen its lifetime from 50 micros to 2.5 ms, a 50-fold enhancement that again emphasizes how W310 emission is dominated by the local interaction with Y283. Tyr quenching of W310 exhibits a strong temperature dependence, with a rate constant kq = 0.1 s(-1) at 140 K and 2 x 10(4) s(-1) at 293 K. Comparison between thermal quenching profiles of the W84F mutant in solution and in the dry state, where protein flexibility is drastically reduced, shows that the activation energy of the quenching reaction is rather small, Ea < or = 0.17 kcal mol(-1), and that, on the contrary, structural fluctuations play an important role on the effectiveness of Tyr quenching. Various putative quenching mechanisms are examined, and the conclusion, based on the present results as well as on the phosphorescence characteristics of other protein systems, is that Tyr quenching occurs through the formation of an excited-state triplet exciplex.  相似文献   

9.
Tyr114 and Tyr197 are highly conserved residues in the active site of human glutathione reductase, Tyr114 in the glutathione disulfide (GSSG) binding site and Tyr197 in the NADPH site. Mutation of either residue has profound effects on catalysis. Y197S and Y114L have 17% and 14% the activity of the wild-type enzyme, respectively. Mutation of Tyr197, in the NADPH site, leads to a decrease in Km for GSSG, and mutation of Tyr114, in the GSSG site, leads to a decrease in Km for NADPH. This behavior is predicted for enzymes operating by a ping-pong mechanism where both half-reactions partially limit turnover. Titration of the wild-type enzyme or Y114L with NADPH proceeds in two phases, Eox to EH2 and EH2 to EH2-NADPH. In contrast, Y197S reacts monophasically, showing that excess NADPH fails to enhance the absorbance of the thiolate-FAD charge-transfer complex, the predominant EH2 form of glutathione reductase. The reductive half-reactions of the wild-type enzyme and of Y114L are similar; FAD reduction is fast (approximately 500 s-1 at 4 degreesC) and thiolate-FAD charge-transfer complex formation has a rate of 100 s-1. In Y197S, these rates are only 78 and 5 s-1, respectively. The oxidative half-reaction, the rate of reoxidation of EH2 by GSSG, of the wild-type enzyme is approximately 4-fold faster than that of Y114L. These results are consistent with Tyr197 serving as a gate in the binding of NADPH, and they indicate that Tyr114 assists the acid catalyst His467'.  相似文献   

10.
3Beta-hydroxysteroid dehydrogenase/steroid delta5-isomerase (3beta-HSD/isomerase) was expressed by baculovirus in Spodoptera fungiperda (Sf9) insect cells from cDNA sequences encoding the human wild-type I (placental) enzyme and the human type I mutant- Y253F. The wild-type and Y253F enzymes were each purified as a single, homogeneous protein from a suspension of the Sf9 cells. Ultraviolet (UV) spectral analyses showed that the wild-type enzyme induced changes in the UV spectrum of the competitive isomerase inhibitor, 19-nortestosterone, and the Y253F mutant did not. The wild-type isomerase required activation by coenzyme to produce the spectral shift. Activation of isomerase by NADH produced a greater change in the 19-nortestosterone spectrum than activation by NAD+. These observations provide direct evidence that Tyr253 functions as the general acid (proton donor) in the isomerase reaction mechanism. Furthermore, the coenzyme-activation profiles support our proposed two-step enzyme mechanism in which NADH produced by the 3beta-HSD activity induces the enzyme to assume the isomerase conformation.  相似文献   

11.
12.
The C-terminal domain of p53 may bind single-stranded (ss) DNA ends and catalyze renaturation of ss complementary DNA molecules, suggesting a possible direct role for p53 in DNA repair (Proc. Natl. Acad. Sci. USA, 92, 9455-9459, 1995). We found that DU-86, a duocarmycin derivative which alkylates DNA, bound ssDNA and enhanced the DNA binding activity of the p53 C-terminus. DU-86 weakened p53-mediated catalysis of complementary ssDNA renaturation. p53 C-terminus catalyzed DNA strand transfer toward annealing between intact ssDNAs and toward eliminating DU-86-damaged ssDNA from duplex formation. These results suggest that p53, via the C-terminal domain, may play a direct role in DNA repair by preferential recognization and elimination of damaged DNA.  相似文献   

13.
Prostaglandin H synthases (PGHSs) catalyze the conversion of arachidonic acid to prostaglandins. In this report, we describe the effect of a PGHS2 Y355F mutation on the dynamics of PGHS2 catalysis and inhibition. Tyr355 is part of a hydrogen-bonding network located at the entrance to the cyclooxygenase active site. The Y355F mutant exhibited allosteric activation kinetics in the presence of arachidonic acid that was defined by a curved Eadie-Scatchard plot and a Hill coefficient of 1.36 +/- 0.05. Arachidonic acid-induced allosteric activation has not been directly observed with wild type PGHS2. The mutation also decreased the observed time-dependent inhibition by indomethacin, flurbiprofen, RS-57067, and SC-57666. Detailed kinetic analysis showed that the Y355F mutation decreased the transition state energy associated with slow-binding inhibition (EIdouble dagger) relative to the energy associated with catalysis (ESdouble dagger) by 1.33, 0.67, and 1.06 kcal/mol, respectively, for indomethacin, flurbiprofen, and RS-57067. These observations show Tyr355 to be involved in the molecular mechanism of time-dependent inhibition. We interpret these results to indicate that slow binding inhibitors and the Y355F mutant slow the rate and unmask intrinsic, dynamic events associated with product formation. We hypothesize that the dynamic events are the equilibrium between relaxed and tightened organizations of the hydrogen-bonding network at the entrance to the cyclooxygenase active site. It is these rearrangements that control the rate of substrate binding and ultimately the rate of prostaglandin formation.  相似文献   

14.
Saccharomyces cerevisiae Rad51 protein is the paradigm for eukaryotic ATP-dependent DNA strand exchange proteins. To explain some of the unique characteristics of DNA strand exchange promoted by Rad51 protein, when compared with its prokaryotic homologue the Escherichia coli RecA protein, we analyzed the DNA binding properties of the Rad51 protein. Rad51 protein binds both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in an ATP- and Mg2+-dependent manner, over a wide range of pH, with an apparent binding stoichiometry of approximately 1 protein monomer per 4 (+/-1) nucleotides or base pairs, respectively. Only dATP and adenosine 5'-gamma-(thiotriphosphate) (ATPgammaS) can substitute for ATP, but binding in the presence of ATPgammaS requires more than a 5-fold stoichiometric excess of protein. Without nucleotide cofactor, Rad51 protein binds both ssDNA and dsDNA but only at pH values lower than 6.8; in this case, the apparent binding stoichiometry covers the range of 1 protein monomer per 6-9 nucleotides or base pairs. Therefore, Rad51 protein displays two distinct modes of DNA binding. These binding modes are not inter-convertible; however, their initial selection is governed by ATP binding. On the basis of these DNA binding properties, we conclude that the main reason for the low efficiency of the DNA strand exchange promoted by Rad51 protein in vitro is its enhanced dsDNA-binding ability, which inhibits both the presynaptic and synaptic phases of the DNA strand exchange reaction as follows: during presynapsis, Rad51 protein interacts with and stabilizes secondary structures in ssDNA thereby inhibiting formation of a contiguous nucleoprotein filament; during synapsis, Rad51 protein inactivates the homologous dsDNA partner by directly binding to it.  相似文献   

15.
CD44 molecules are cell surface receptors for hyaluronan (HA). To define regions of the extracellular domain of CD44 that are important for HA binding, we have studied the ability of HA-blocking CD44 mAbs to bind to CD44 from a variety of sources. Five CD44 mAbs (5F12, BRIC235, 3F12, BU-75, and HP2/9) of 21 studied were identified that at least partially blocked FITC-labeled HA (HA-FITC) binding to the standard form of CD44 (CD44S) in CD44-transfected Jurkat cells. Analysis of reactivity of HA-blocking CD44 mAbs defined three distinct epitopes. Lack of reactivity of mAb 5F12 with a CD44 fusion protein (CD44-Rg) containing an N-terminal truncation of 20 amino acids (aa), as well as reactivity of mAb 5F12 with an N-terminal CD44 synthetic peptide (CD44-9A), demonstrated that the N-terminal proximal region of CD44 (aa 1 to 20) was involved in mAb 5F12 binding. A mutant cell line, CEM-NKR, derived from the T-ALL cell line, CEM, did not bind mAb 5F12 nor bind HA, whereas wild-type CEM did bind mAb 5F12 and HA. Sequence analysis of wild-type CEM and CEM-NKR CD44 cDNA demonstrated a G to A point mutation at position 575 in the CD44 cDNA of CEM-NKR, resulting in an arginine to histidine mutation at aa position 154. Taken together, our studies demonstrated that there are three epitopes to which HA-blocking mAbs bind in the extracellular domain of CD44, and that the CD44 N-terminal proximal and central regions are two regions in the extracellular domain of CD44 that may interact and either mediate or regulate HA binding to cell surface CD44.  相似文献   

16.
We examined previously unexplored aspects of the tetramerization and single-stranded DNA (ssDNA) binding properties of native, precursor, and mutated forms of mitochondrial ssDNA-binding protein (mtSSB) from a mammalian organism (mouse). Tetramic forms of mtSSB reassemble spontaneously after thermal denaturation and undergo subunit exchange. Binding of mtSSB to ssDNA as a function of protein concentration is nonlinear, suggesting a concentration-dependent transition in intrinsic binding affinity and in the topology of the DNA-protein complex. The cleavable presequence at the amino terminus of the precursor form of mtSSB does not disrupt tetramer formation but has a specific inhibitory effect on DNA binding that is not seen in a fusion protein that substitutes a bulkier peptide moiety in this position. Mutated forms of mtSSB bearing amino acid substitutions at highly conserved amino acid positions exhibit subtle or severe defects in ssDNA binding activity and/or tetramerization, even when assembled into heterotetramers in combination with wild-type mtSSB monomers. These experiments provide new insights into structural and functional properties of mammalian mtSSB and have implications for the pathogenesis of human diseases resulting from defects in mtDNA replication.  相似文献   

17.
The conserved Trp residue within helix 5 of the N-lobe of human serum transferrin (hTF/2N, 40 kDa) has been mutated to Tyr. NMR and CD spectra and energy calculations show that the mutation causes little perturbation of the overall structure of hTF/2N although the chelating agent Tiron removed Fe3+ from the mutant protein about three times faster than from wild-type hTF/2N. 1H-NMR resonances of residues in the Leu122-Trp128-Ile132 hydrophobic patch are assigned both by ring current calculations and with the aid of the mutation. [1H, 15N]-NMR resonances for 11 of the 14 Tyr residues were observed in the spectra of 15N-Tyr-hTF/2N and a resonance for Tyr128 was assignable in spectra of the mutant. The 15N resonance of Y128 was sensitive to oxalate and Ga3+ binding, and Ga3+ binding perturbed 15N resonances for most of the Tyr residues. Since these are well distributed over the N-lobe, it can be concluded that metal-induced structural changes are not merely local to the binding site.  相似文献   

18.
A cephalosporin acylase from Pseudomonas strain N176 hydrolyses both 7-beta-(4-carboxybutanamido)-cephalosporanic acid (glutarylcephalosporanic acid) and cephalosporin C to 7-amino-cephalosporanic acid. However, its productivity in the original host was low and its activity against cephalosporin C was not sufficient for direct large-scale production of 7-amino-cephalosporanic acid. In order to overcome these problems, we established a high-level expression system for the acylase in Escherichia coli. Tyr270 in the acylase is reported to play an important role in the interaction with glutarylcephalosporanic acid, as determined from the reaction with an affinity-label reagent, 7 beta-(6-bromohexanoylamido) cephalosporanic acid [Ishii, Y., Saito, Y., Sasaki, H., Uchiyama, F., Hayashi, M., Nakamura, S. & Niwa, M. (1994) J. Ferment. Bioeng. 77, 598-603] and modification with tetranitromethane [Nobbs, T. J., Ishii, Y., Fujimura, T., Saito, Y. & Niwa, M. (1994) J. Ferment. Bioeng. 77, 604-609]. From carbamoylation with potassium cyanate and site-directed point mutagenesis of the cephalosporin C acylase, we have deduced that Tyr270 exists at a position where it can interact with a residue (possibly Ser239) corresponding to inactivation by carbamoylation. We mutated Met269 and Ala271 of the acylase and found that mutation of Met269 to Tyr or Phe caused a 1.6-fold and 1.7-fold increase, respectively, of specific activity against cephalosporin C as compared to that of the wild-type enzyme. Kinetic studies of these mutants revealed that their kcat values increased, although their Km values against cephalosporin C were not changed. These data indicate that the mutation of Met269 near Tyr270 induces a minor conformational change to increase the stability of the activated complex with the enzyme and cephalosporin C. In particular, a mutant in which Met269 was replaced by Tyr was 2.5-fold more efficient in converting cephalosporin C to 7-amino-cephalosporanic acid than the wild-type enzyme under conditions similar to those in a bio-reactor system.  相似文献   

19.
OBJECTIVES: The purpose of this study was to monitor the effects of chimeric 7E3 Fab (ReoPro) on leukocyte and platelet activation and interaction during coronary angioplasty. BACKGROUND: Increased expression of CD11b on monocytes and neutrophils promotes their adhesion to endothelial cells, extracellular matrix and smooth muscle cells. Thrombin-activated platelets adhere via P-selectin to monocytes and neutrophils. These cell interactions may affect the outcome of coronary angioplasty. METHODS: During coronary angioplasty, venous blood was obtained for flow cytometric detection of leukocyte CD11b; platelet CD41a, CD61a and CD62P; the percentage of leukocytes with adherent platelets and the intensity of bound platelet fluorescence. RESULTS: Leukocyte CD11b expression increased after angioplasty in control patients (neutrophils 171+/-25 to 255+/-31 mean fluorescence intensity [MFI, mean+/-SEM], n=25, p < 0.0001; monocytes 200+/-40 to 248+/-36 MFI, n=17, p < 0.05) and decreased in the patients selected to receive chimeric 7E3 Fab (neutrophils 146+/-30 to 82+/-22 MFI, n=25, p < 0.0001; monocytes 256+/- 53 to 160+/-38 MFI, n= 17, p < 0.05). Neutrophil CD11b decreased after in vitro incubation of whole blood with chimeric 7E3 Fab (n=5, p=0.01), but fMLP-induced increases in CD11b were not prevented. The CD11b expression was unchanged and increased with fMLP stimulation after in vitro incubation of isolated neutrophils with chimeric 7E3 Fab. Direct-labeled chimeric 7E3 Fab was not detected bound to neutrophils in whole blood or isolated cells using flow cytometric techniques. Adhesion of isolated neutrophils to protein-coated glass was not prevented by in vitro incubation with chimeric 7E3 Fab. Platelet activation increased after angioplasty in control patients (CD62P 8.9+/-0.8 to 12.3+/-1.2 MFI, n=25, p < 0.05; CD41a 382+/-25 to 454+/-26 MFI, n=25, p < 0.05, CD61a 436+/-52 to 529+/-58 MFI, n=11, p < 0.05); it did not increase in the patients selected to receive chimeric 7E3 Fab (CD62P 13.2+/-1.0 to 9.0+/-0.9 MFI, n=25, p < 0.05; CD61a 398+/-32 to 410+/-38 MFI, n=7, p=NS). Leukocytes with adherent platelets tended to increase in the control group of patients and decrease after the procedure in patients selected to receive chimeric 7E3 Fab; individual and procedure-related variability were marked. CONCLUSIONS: Despite standard aspirin and heparin therapy, leukocyte and platelet activation with platelet adherence to leukocytes occurs after coronary angioplasty. Although chimeric 7E3 Fab does not bind to leukocytes directly, it influences CD11b expression in whole blood. Modulation of platelet and leukocyte activation and interaction by chimeric 7E3 Fab may contribute to an improved outcome after coronary angioplasty.  相似文献   

20.
The human single-stranded DNA-binding replication A protein (RPA) is involved in various DNA-processing events. By comparing the affinity of hRPA for artificial DNA hairpin structures with 3'- or 5'-protruding single-stranded arms, we found that hRPA binds ssDNA with a defined polarity; a strong ssDNA interaction domain of hRPA is positioned at the 5' side of its binding region, a weak ssDNA-binding domain resides at the 3' side. Polarity appears crucial for positioning of the excision repair nucleases XPG and ERCC1-XPF on the DNA. With the 3'-oriented side of hRPA facing a duplex ssDNA junction, hRPA interacts with and stimulates ERCC1-XPF, whereas the 5'-oriented side of hRPA at a DNA junction allows stable binding of XPG to hRPA. Our data pinpoint hRPA to the undamaged strand during nucleotide excision repair. Polarity of hRPA on ssDNA is likely to contribute to the directionality of other hRPA-dependent processes as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号