首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combined microscopy techniques are used to establish the usability of phosphonic acid layers as promoters of hydroxyapatite (HAp) growth. Using spread coating, octadecylphosphonic acid (OPA) self‐assembled bilayers are delivered to the thin natural oxide layer of a titanium film surface with no prior treatment. These bilayers aggregate two major advantages of phosphonic moieties to titanium surfaces: nucleation of hydroxyapatite crystals from ionic solution and affinity for both titanium oxide surface and HAp crystals. The functionalized substrates and bare titanium (control) samples are immersed in an aqueous solution containing calcium and phosphorus ions. Over a 4‐week immersion time, OPA‐functionalized substrates present numerous large agglomerates of inorganic crystals, in contrast to control samples, with no significant amount of deposits. Initial sample characterization was performed with atomic force microscopy (AFM). Compositional and structural characterization of these agglomerates (using TEM, EDS, and electron diffraction), revealed that they are indeed HAp, the main component of the inorganic bone matrix. Microsc. Res. Tech. 76:1278–1283, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
A method using the Spurr low-viscosity epoxy resin medium for the preparation of Von Kossa impregnated undecalcified bone sections for light microscopy is described. The method gives high quality thin sections (0·6–1·0 μm) of cancellous bone and overcomes some of the difficulties experienced with other plastics. The procedure is relatively simple and is well suited for use in a routine diagnostic laboratory.  相似文献   

3.
The success of dental implants is related to the amount, quality, and composition of the alveolar bone. The placement of platelet‐rich fibrin (PRF) clot associated with a resorbable collagen membrane (RCM) in a postextraction alveolus is a technique used for ridge preservation. This case report study analyzed the ultrastructural characteristics of cross‐sectioned alveolar bone that received PRF and RCM using scanning electron microscopy and the inorganic composition using “energy dispersive X‐ray spectrometry,” in order to explore the feasibility of this method to clinical studies. Three alveolar bone samples from two male patients (37 and 58 years old), obtained in the procedure of placing the dental implant, were analyzed. Two bone samples previously received PRF and RCM (M37 and M58), the third sample represented a physiological bone formation without treatment (M37‐control). The bone sample M37 showed irregularly shaped islets of calcified material intermingled with connective tissue. The other samples, from the 58‐year‐old patient with PRF and RCM (M58); and the other untreated bone sample from the same 37‐year‐old patient (M37‐control) showed similar ultrastructural morphology with trabecular conformation without islets agglomerations. The inorganic composition analysis showed higher concentrations of calcium and phosphorus in both samples treated with PRF and RCM in comparison to the untreated bone sample. The Ca/P ratio was higher in the M37 sample compared to the others samples. The results showed morphology and inorganic composition differences among the treatments used, suggesting that this method is feasible to analyze parameters of the alveolar bone tissue.  相似文献   

4.
Detailed studies of biological phenomena often involve multiple microscopy and imaging modes and media. For bone biology, various forms of light and electron microscopy are used to study the microscopic structure of bone. Integrating information from the different sources is necessary to understand how different aspects of the bone structure interact. To accomplish this, methods were developed to prepare and image thin sections for correlative light microscopy (LM) and backscattered electron imaging in the scanning electron microscope (BSE-SEM). Images of the same fields of view may then be analyzed for degrees of relationships between specimen features not observed by LM or SEM alone. These methods are applied here to study possible associations between the degree of bone mineralization and pattern of collagen fiber orientation in the mid-shaft of the human femur. The "relational images" obtained allow us to examine the relationship between these two variables, both objectively and quantitatively.  相似文献   

5.
The selection of an appropriate demineralizing solution in pathology laboratories depends on several factors such as the preservation of cellularity, urgency of diagnostic and financial costs. The aim of this study was to test different decalcification bone procedures in order to establish the best value of these in formalin‐fixed and paraffin‐embedded samples. Femurs were removed from 13 adult male Wistar rats to obtain 130 bone disks randomly divided into five groups that were demineralized in different concentrations of nitric acid (Group I); formic acid (Group II); acetic acid (Group III); EDTA, pH7.4 (Group IV) and Morsés solution (Group V). Serial, 3‐μm‐thick sections were obtained and stained with hematoxylin‐eosin to calculate the percentage of osteocyte‐occupied lacunae. The sections were also stained with Masson's trichrome in conjunction with picrosirius red under polarized light followed by a semi‐quantitative analysis to verify the adjacent muscle‐to‐bone integrity and preservation of collagen fibres. The highest percentage of osteocyte‐occupied lacunae was found with 10% acetic acid solution (95.64 ± 0.95%) and Group I (nitric acid) demanded the shorter time (0.8–5.7days). Of all solutions, 5% nitric acid incurred the lowest cost to achieve complete demineralization compared with other solutions (p < .001). Group IV (EDTA) had the highest integrity of muscle and collagen type I and III (P < 0.01). Demineralization with 10% acetic acid was the most effective at preserving bone tissue, while 5% EDTA was the best at maintaining collagen and adjacent muscle to bone. In conclusion, nitric acid at 5% showed the most efficient result as it balanced both time and cost as a demineralizing solution.  相似文献   

6.
7.
Hydroxyapatite has been shown to be biocompatible and bioactive. Incorporation of porosity has been shown to enhance osteointegration; however, difficulty in controlling the extent and type of porosity has limited investigation into determining the role of both macro‐ and microporosity. The current investigation reports on the synthesis of four types of phase‐pure hydroxyapatite with varying levels of porosity (HA1–HA4), and with defined levels of macro‐ and microporosities. Transmission electron microscopy was used to evaluate qualitatively the effect of these two parameters on cell–material interactions following a 30‐day incubation period. Biological mineralization was observed within vesicles and the needle‐like minerals were confirmed as hydroxyapatite using X‐ray microanalysis. This demonstrated the suitability of primary human osteoblast‐like cells as a tool to assess the extent of mineralization. Furthermore, internalization of hydroxyapatite particles was observed. Our findings show that the variation in macro‐ and microporosity does not affect the extent of cell–material interaction, with collagen synthesis evident in all samples.  相似文献   

8.
Objective : The aim of this study was to clarify an influence of the fine structure of human tooth enamel to the yellowing teeth. Materials and methods : Sound maxillary first premolars of 15–50‐year‐old females that were extracted for the orthodontic treatment were used as the test samples. The tooth enamel sections of these teeth that prepared by ion polishing were observed by scanning electron microscopy (SEM). Furthermore, the fine structure of substance filling the inter‐rod spaces was analyzed by high resolution transmission electron microscopy (HRTEM). Results : In white tooth, the inter‐rod spaces were observed at the width of about 0.1 μm, while in yellow tooth, the inter‐rod spaces were not clearly observed by SEM. HRTEM observations revealed for the first time that the inter‐rod spaces were filled with fine particles of poorly crystallized hydroxyapatite in the yellow tooth. In yellow tooth, it was considered that the color of the inner dentin was recognized due to the decrease of light scattering by filling the tooth enamel inter‐rod spaces. The generation of particles in the tooth enamel inter‐rod spaces was considered to be caused by the long‐time progression of calcification. Conclusions : These results suggested that the change in fine structure, filling in inter‐rod spaces of tooth enamel, was related to progression of calcification in the inter‐rod spaces with advancing age and one of the factors of yellowness of human tooth. Microsc. Res. Tech. 79:14–22, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
Design‐based stereological methods using systematic uniform random sampling, the Cavalieri estimator and vertical sections are used to investigate undecalcified human femoral heads. Ten entire human femoral heads, obtained from normal women and normal men, were systematically sampled and thin undecalcified vertical sections were obtained. Absolute volumes and surface areas of the entire femoral head, the articular cartilage and the calcified cartilage compartments were estimated. In addition, the average thickness of the articular cartilage and the calcified cartilage were calculated. The stereological procedures applied to the human femoral heads resulted in average coefficient of errors, which were 0.03–0.06 for the volume estimates and 0.03–0.04 for the surface area estimates. We conclude that design‐based stereology using the Cavalieri estimator and vertical sections can successfully be used in large undecalcified tissue specimens, like the human femoral head, to estimate the absolute volume and surface area of macroscopic as well as of microscopic tissue compartments. The application of well‐known design‐based stereological methods carries potential advantage for investigating the pathology in inflammatory and degenerative joint diseases.  相似文献   

10.
Inhibitors of Cathepsin K (Cat‐K) are recognized as an interesting way to inhibit osteoclast (OC) activity. OCs from patients treated with the anticathepsin‐K inhibitor AAE581 (balicatib) were found enlarged. They contained numerous vacuoles filled with tartrate resistant acid phosphatase (TRAcP), an intracellular enzyme that terminates the degradation of collagen internalized in OC transcytotic vesicles. In a phase 2 clinical study, 675 patients with postmenopausal osteoporosis received the Cat‐K inhibitor AAE581 at 0, 5, 10, 25, or 50 mg/D during 1 year. Eleven patients had a transiliac bone biopsy, studied undecalcified. Histoenzymatic detection of TRAcP was used to identify and count OC number. The histomorphometrist was not aware of the randomization of patients at the time of analysis. OC were unstained in one patient because of a failure in the fixation protocol, but easily observable in the 10 remaining patients. Whatever the received dose, treated patients exhibited a characteristic aspect of the OC cytoplasm which appeared filled of deeply‐stained brown vacuoles, making cells looking like bunches of grape. These round vacuoles, evidenced on TRAcP‐stained sections, were due to the accumulation of intracytoplasmic TRAcP. This led to a moderate enlargement of the OC size when compared to a series of control osteoporotic patients. AAE581 did not induce OC apoptosis at any dosage but it modified OC morphology. Cat‐K inhibition (inhibiting the extracellular collagen breakdown) is associated with a compensatory accumulation of intracellular TRAcP that could not be used to complete protein degradation. TRAcP is also known to be degraded by Cat‐K. Microsc. Res. Tech., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
A new staining technique which stains osteoid and bone tissue differentially and also demonstrates boundary bone, pathological osteoid and the changes in ageing, pathological and dead bone matrix in decalcified paraffin or low-viscosity-nitrocellulose bone sections was developed. This phosphotungstic acid-iron-haematoxylin (PTAIH) method is based on pretreating the sections with phosphotungstic acid followed by an iron alum mordant and staining in haematoxylin with subsequent timed differentiation, at certain stages of which the features listed above appear. Van Gieson's picrofuchsin is then used as a counterstain. After standard differentiation osteoid appears red in sharp contrast with the black bone, young and woven bone, old and lamellar bone, and allows one to demonstrate changes in stainability of diseased osteoid and bone matrix, and dead bone. With the differentiation done individually and interrupted at certain stages it is possible to distinguish between various bone components depending on the amount and quality of their in vivo mineralisation. Comparison with controls showed that in this respect the method is more sensitive than the curremt staining techniques of undecalcified bone sections since it demonstrates not only unmineralised and fully mineralised tissues but also shows the poorly calcified, demineralised and ill-calcified bone components. The advantages of the method compared with those using undecalcified sections are its simplicity, suitability for fixed and decalcified material in any unspecialised histological laboratory and the fact that osteoid and other bone components can be studied in sections of unlimited size and in undisturbed relationship to their surrounding soft tissues.  相似文献   

12.
Measurement of collagen bundle orientation in histopathological samples is a widely used and useful technique in many research and clinical scenarios. Fourier analysis is the preferred method for performing this measurement, but the most appropriate staining and microscopy technique remains unclear. Some authors advocate the use of Haematoxylin‐Eosin (H&E) and confocal microscopy, but there are no studies comparing this technique with other classical collagen stainings. In our study, 46 human skin samples were collected, processed for histological analysis and stained with Masson's trichrome, Picrosirius red and H&E. Five microphotographs of the reticular dermis were taken with a 200× magnification with light microscopy, polarized microscopy and confocal microscopy, respectively. Two independent observers measured collagen bundle orientation with semiautomated Fourier analysis with the Image‐Pro Plus 7.0 software and three independent observers performed a semiquantitative evaluation of the same parameter. The average orientation for each case was calculated with the values of the five pictures. We analyzed the interrater reliability, the consistency between Fourier analysis and average semiquantitative evaluation and the consistency between measurements in Masson's trichrome, Picrosirius red and H&E‐confocal. Statistical analysis for reliability and agreement was performed with the SPSS 22.0 software and consisted of intraclass correlation coefficient (ICC), Bland‐Altman plots and limits of agreement and coefficient of variation. Interrater reliability was almost perfect (ICC > 0.8) with all three histological and microscopy techniques and always superior in Fourier analysis than in average semiquantitative evaluation. Measurements were consistent between Fourier analysis by one observer and average semiquantitative evaluation by three observers, with an almost perfect agreement with Masson's trichrome and Picrosirius red techniques (ICC > 0.8) and a strong agreement with H&E‐confocal (0.7 < ICC < 0.8). Comparison of measurements between the three techniques for the same observer showed an almost perfect agreement (ICC > 0.8), better with Fourier analysis than with semiquantitative evaluation (single and average). These results in nonpathological skin samples were also confirmed in a preliminary analysis in eight scleroderma skin samples. Our results show that Masson's trichrome and Picrosirius red are consistent with H&E‐confocal for measuring collagen bundle orientation in histological samples and could thus be used indistinctly for this purpose. Fourier analysis is superior to average semiquantitative evaluation and should keep being used as the preferred method.  相似文献   

13.
A new method is described for the analysis of the two-dimensional structural pattern of trabecular bone in human iliac crest biopsies. 8 μm thick undecalcified sections stained with the von Kossa technique were examined at a magnification of ×9. Using an Ibas II image analyser, the ratio of nodes to free ends and the length of different strut types (cortex to free end, node or cortex, free end to free end and node to node, loop or free end) expressed as a percentage of total strut length were assessed. The reproducibility of the method was good for most of the measured indices but inter-observer and inter-section variation were greater. Comparison of biopsy sections obtained from eleven young healthy control subjects and eleven patients with hepatic osteoporosis revealed a significantly higher node to free end ratio, node to loop and node to node strut length and significantly lower cortex to free end and free end to free end strut length in the controls. No significant differences were seen in node to free end, cortex to cortex or cortex to node strut length. This approach to trabecular bone structure analysis should prove useful in determining patterns of bone loss in health and disease and in examining the effects of treatment on bone structure in osteoporosis.  相似文献   

14.
The aim of the study was to evaluate the adhesion of a self‐adhering flowable composite resin to primary tooth enamel and dentin after silicon carbide paper (SiC) and laser pretreatment. Adhesive properties were evaluated as shear bond strength (SBS) and scanning electron microscopic (SEM) characteristics. A total 120 primary canine teeth were randomly divided into two groups to study enamel and dentin. Each group was divided into 6 subgroups (n = 10) according to type of surface preparation (SiC or Er:YAG laser) of enamel or dentin. Three methods were used to build cylinders of restoration on tooth surface: OptiBond All‐In‐One + Premise Flowable composite, OptiBond All‐In‐One + Vertise Flow and Vertise flow. After restoration, samples were tested for SBS and failure mode. Twenty eight samples were examined by SEM. The results of the study showed SBS of Vertise Flow was lower than others in enamel and dentin samples pretreated with SiC and in dentin samples pretreated with laser (P < 0.001). Compared to SiC pretreatment, laser pretreatment led to a significantly higher SBS with Vertise Flow on enamel (P < 0.001). Vertise Flow associated with the adhesive led to a higher SBS in enamel and dentin compared to Vertise Flow alone. Adhesive and mixed failure modes were observed more frequently in Vertise Flow groups. SEM images showed that Vertise Flow led to more irregularities on enamel and more open dentinal tubules after laser ablation compared SiC pretreatment. Microsc. Res. Tech. 79:334–341, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
Transverse and longitudinal sectioning of undecalcified cortical bone is a commonly employed technique for investigating the lamellar structure of the osteons. Since a flat surface is required, the specimen has to be grinded and then polished. Whereas the smear of debris and inorganic/organic deposits left by these treatments cannot be removed by ultrasonication alone, a chemical treatment of the specimen surface with either a basic or an acid etching solution is currently employed. A further effect of the latter can be the enhancement of the lamellar bone pattern. The kind of etching solution, its pH, the concentration of etchants, and the contact time significantly affect the sectioned surface when it is observed with scanning electron microscopy (SEM). The etching procedures can severely influence the obtained images. Homogeneous cortical bone specimens were sampled from the first metatarsal of two fresh human subjects. One or two cut surfaces were exposed to different acid and basic solutions in bonded conditions. Considering the type of chemical agents, the solution pH, and the exposure time of the specimens, the effects of several etching media have been investigated and compared. Strong etching, either acid or basic produced surface decalcification and severe damage of the collagen matrix, compromising any morphological or morphometric analysis. Weak acid etching (for example citric and acetic acid), even though causing distinctive alteration of the sample, enhanced the visibility of the lamellar pattern, while the polyphosphate treatment of the surface decalcified a thin layer matrix, ensuring a good visibility of fibrils and avoiding rough distortions. Microsc. Res. Tech. 77:653–660, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
The effects of experimentally induced high incubation temperature on the embryonic development of growth plate of the chicken were investigated by means of histological and enzyme histochemical methods. In the experiments, 250 fertile eggs of Ross‐308 broiler strain were divided into two groups, the control eggs were maintained under optimal conditions (37.8°C and 65% ± 2% relative humidity, rh) during the whole incubation period. Heat‐stress imposed eggs were maintained under normal conditions (37.8°C and 65% ± 2% rh) until the 10th day of incubation, and then, continuously (24 h per day) exposed to high temperature (38.8°C and 65% ± 2% rh). Tissue samples were taken from 10 animals of each group at the 11th, 13th, 15th, 18th, 21st days of incubation. Tissue samples were processed by enzyme histochemical methods in addition to routine histological techniques. The relative tibia weights and tibia length were lower in the heat‐stress group compared to the control group. The results of the measurements of the growth plate showed that the proliferative zone was narrowed whereas, the transitional and hypertrophic zone were thickened in the heat stress group. Alkaline phosphatase (ALP) density was significantly decreased in the heat‐stress group compared to the control group. In conclusion, bone formation and growth plate formation are crucial for embryo development and 1°C higher from optimum may increase the incidence of skeletal disorders and leg problems in broiler chickens which is one of the major animal welfare concerns for the poultry industry. Microsc. Res. Tech. 79:106–110, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
A comparative characterization of the structure of normal and abnormal (osteoporotic) human lumbar and thoracic vertebrae samples was carried out to reveal the type of possible disorder. Samples from the bone fragments extracted during the surgery due to vertebra fractures were examined by scanning electron microscopy (SEM), conventional and high resolution transmission electron microscopy (TEM and HRTEM), and X-ray energy dispersive spectroscopy (EDS). Contrary to what might be expected in accordance with possible processes of dissolution, formation and remineralization of hard tissues, no changes in phase composition of mineral part, crystal sizes (length, width, and thickness), and arrangement of crystals on collagen fibers were detected in abnormal bones compared to the normal ones. The following sizes were determined by HRTEM for all bone samples: 相似文献   

18.
In the very high cycle fatigue regime, internal crack initiation can occur in Ti‐6Al‐4V because of the formation of facets, which are α grains that have fractured in a transcrystalline and planar manner. Because this crack initiation phase occupies most of the fatigue life, it is essential to understand which mechanisms lead to facet formation. Fatigue tests have been performed on drawn and heat‐treated Ti‐6Al‐4V wires, and the facets at internal crack initiation sites have been analysed in detail in terms of their appearance, their spatial orientation and their crystallographic orientation. The facets were not smooth, but showed surface markings at the nanoscale. In nearly all cases, these markings followed a linear pattern. One anomalous facet, in a sample with the largest grain size, contained a fan‐shaped pattern. The facets were at relatively steep angles, mostly between 50° and 70°. Cross‐sections of the fracture surfaces have been made by focused ion beam milling and were used to measure the crystallographic orientation of facets by electron backscatter diffraction. Most facet planes coincided with a prismatic lattice plane, and the linear markings were parallel to the prismatic slip direction, which is a strong indication that prismatic slip and slip band formation led to crack initiation. However, the anomalous facet had a near‐basal orientation, which points to a possible cleavage mechanism. The cross‐sections also exposed secondary cracks, which had formed on prismatic lattice planes, and in some cases early stage facet formation and short crack growth phenomena. The latter observations show that facets can extend through more than one grain, and that there is crack coalescence between facets. The fact that drawn wires have a specific crystallographic texture has led to a different facet formation behaviour compared to what has been suggested in the literature.  相似文献   

19.
A complex of techniques is described, including a specially designed mould and a method for flat mounting of the sections, enabling to obtain well-stretched and undamaged thin sections of undecalcified bone biopsies. Apart from a gain in polymerisation time, a clear advantage of the special mould is a more favorable temperature course in and around the tissue during the polymerisation process.  相似文献   

20.
Bioprosthetic heart valve tissue and associated calcification were studied in their natural state, using environmental scanning electron microscopy (ESEM). Energy dispersive X‐ray micro‐analysis, X‐ray diffraction, Fourier‐transform infrared and Raman spectroscopy were used to characterize the various calcific deposits observed with ESEM. The major elements present in calcified valves were also analyzed by inductively coupled plasma–optical emission spectroscopy. To better understand the precursor formation of the calcific deposits, results from the elemental analyses were statistically correlated. ESEM revealed the presence of four broad types of calcium phosphate crystal morphology. In addition, two main patterns of organization of calcific deposits were observed associated with the collagen fibres. Energy dispersive X‐ray micro‐analysis identified the crystals observed by ESEM as salts containing mainly calcium and phosphate with ratios from 1.340 (possibly octacalcium phosphate, which has a Ca/P ratio of 1.336) to 2.045 (possibly hydroxyapatite with incorporation of carbonate and metal ion contaminants, such as silicon and magnesium, in the crystal lattice). Raman and fourier‐transform infrared spectroscopy also identified the presence of carbonate and the analyses showed spectral features very similar to a crystalline hydroxyapatite spectrum, also refuting the presence of precursor phases such as β‐tricalcium phosphate, octacalcium phosphate and dicalcium phosphate dihydrate. The results of this study raised the possibility of the presence of precursor phases associated with the early stages of calcification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号