首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Serotonin is one of the important neurotransmitter and neuromodulator so far studied in crustacean models. With its secretory sites well-studied in higher crustaceans, its function in controlling the release of metabolic hormones from their storage and release sites has been well proved. The present study attempts to localize serotonin-like immunoreactivity in Fenneropenaeus indicus, a commercially important shrimp species and a natural inhabitant of the Indian oceans. Histological studies were employed to visualize the different types of neurosecretory cells and their regions of occurrence in brain and optic ganglia on the basis of their size, shape, and tinctorial properties. Immunocytochemical studies were performed in the brain and optic ganglia with specific antisera against serotonin in combination with peroxidase anti-peroxidase to map the serotonin-like immunoreactive cells. Variations in the immunoreactivity were observed on comparing the cells of brain and optic ganglia. Medulla terminalis region had intense serotonin immunoreactivity suggesting it to be the primary source of the neurotransmitter.  相似文献   

2.
Gonadotropin releasing hormone (GnRH) is a peptide that is conserved in both vertebrate and invertebrate species. In this study, we have demonstrated the distribution pattern of two isoforms of GnRH‐like peptides in the neural ganglia and testis of reproductively mature male abalone, H. asinina, by immunohistochemistry and whole mount immunofluorescence. We found octopus (oct) GnRH and tunicate‐I (t) GnRH‐I immunoreactivities (ir) in type 1 neurosecretory cells (NS1) and they were expressed mostly within the ventral horn of the cerebral ganglion, whereas in pleuropedal ganglia they were localized primarily in the dorsal horn. Furthermore, tGnRH‐I‐ir were strongly detected in fibers at the caudal part of the cerebral ganglia and both ventral and dorsal horns of the pleuropedal ganglia. In the testis, only octGnRH‐ir was found primarily in the granulated cell and central capillaries within the trabeculae. These results suggest that multiple GnRH‐like peptides are present in the neural ganglia which could be the principal source of their production, whereas GnRH may also be synthesized locally in the testis and act as the paracrine control of testicular maturation. Microsc. Res. Tech. 77:110–119, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
The anterior median (AM) eye of the nocturnal spider Araneus ventricosus showed a marked circadian oscillation of sensitivity, but that of the diurnal spider Menemerus confusus showed no circadian oscillation. The AM eyes of the noct/diurnal spiders Argiope amoena and A. bruennichii have two types of photoreceptor cells with different sensitivities. The more sensitive cells showed a circadian oscillation of sensitivity, but the less sensitive cells did not. The circadian sensitivity change of the eyes was controlled by efferent neurosecretory fibers in the optic nerve. Illuminating the brain increased the frequency of efferent impulses in the optic nerve of Argiope, showing that certain photosensitive neurons are present in the brain. However, it seemed that the cerebral photosensitive neurons may be different from the efferent neurosecretory cells. The response of the cerebral photosensitive neurons increased transiently following diminution of the light intensity striking the eyes. The interaction between the cerebral photosensitive neurons and the eyes seemed to play a role in increasing this response.  相似文献   

4.
The mud crab, Scylla olivacea, is one of the most economically valuable marine species in Southeast Asian countries. However, commercial cultivation is disadvantaged by reduced reproductive capacity in captivity. Therefore, an understanding of the general and detailed anatomy of central nervous system (CNS) is required before investigating the distribution and functions of neurotransmitters, neurohormones, and other biomolecules, involved with reproduction. We found that the anatomical structure of the brain is similar to other crabs. However, the ventral nerve cord (VNC) is unlike other caridian and dendrobrachiate decapods, as the subesophageal (SEG), thoracic and abdominal ganglia are fused, due to the reduction of abdominal segments and the tail. Neurons in clusters within the CNS varied in sizes, and we found that there were five distinct size classes (i.e., very small globuli, small, medium, large, and giant). Clusters in the brain and SEG contained mainly very small globuli and small‐sized neurons, whereas, the VNC contained small‐, medium‐, large‐, and giant‐sized neurons. We postulate that the different sized neurons are involved in different functions. Microsc. Res. Tech. 77:189–200, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Current investigations on the immunohistochemical occurrence and co-occurrence of biogenic polypeptides in the mammalian carotid body were reviewed and extended by our own recent findings. The family of chromogranins and related peptides in glomus cells appears to have a widespread interspecies distribution, whereas other peptides investigated occur in a species-specific pattern. Immunoreactivity to antisera against opioids, which derive from the proenkephalin sequence, appears to be present in glomus cells of the rabbit, cat, dog, and a shrew. Conversely, glomus cells of pig and guinea pig predominantly are immunoreactive to cleavage products of prodynorphin, which co-occur in some cells with substance P and met-enkephalin-arg-phe, respectively. In the rat and Callithrix jacchus, opioid immunoreactivity is present in nerve fibres but not in glomus cells. Immunoreactivity to other peptides, such as neurotensin, cholecystokinin, neuropeptide Y, and galanin, is found only in one or two particular species. Neurotensin immunolabelling occurs in beagle dog glomus cells, which are known to lack substance P. Cholecystokinin immunoreactivity is present in glomus cells of dog and Callithrix, and co-exists with chromogranin A, neuropeptide Y, and substance P. Substance P appears to exist in both carotid body glomus cells and nerve fibres. Substance P immunoreactivity is present in glomus cells of all species investigated, except dog. Coexistence of substance P and calcitonin gene-related peptide (CGRP) is demonstrated in nerve fibres of the guinea pig carotid body, which originate in the petrosal and jugular ganglia. Other peptides visualized immunohistochemically in mammalian carotid body nerve fibres are vasoactive intestinal peptide and neuropeptide Y. The functional significance of the various peptides present in the carotid body is discussed.  相似文献   

6.
The present study focuses on evaluating the potential of flattened AgClBr fibre‐optic evanescent wave spectroscopy (FTIR‐FEWS) technique for detection and identification of cancer cells in vitro using cell culture as a model system. The FTIR‐FEWS results are compared to those from FTIR‐microspectroscopy (FTIR‐MSP) method extensively used to identify spectral properties of intact cells. Ten different samples of control and malignant cells were measured in parallel by the above two methods. Our results show a significant similarity between the results obtained by the two methodologies. The absorbance level of Amide I/Amide II, phosphates and carbohydrates were significantly altered in malignant compared to the normal cells using both systems. Thus, common biomarkers such as Amide I/Amide II, phosphate and carbohydrate levels can be derived to discern between normal and cancer cells. However, marked differences are also noted between the two methodologies in the protein bands due to CH3 bending vibration (1480–1350 cm−1). The spectral differences may be attributed to the variation in the penetration depth of the two methodologies. The use of flattened fibre rather than the standard cylindrical fibre has several practical advantages and is considered as an important step towards in vivo measurements in real time, such as that of skin nevi and melanoma using special designs of fibre‐optic–based sensors.  相似文献   

7.
In this study, the presence and distribution of FMRFamide-like immunoreactivity in the alimentary tract of barnacle Balanus amphitrite were investigated. A net of nerve fibers strongly immunoreactive to FMRFamide-like molecules was localized in the posterior midgut and hindgut. Positive varicose nerve terminals were also localized close to the circular muscle cells and, in the hindgut, close to the radial muscular fibers. Besides this nerve fibers network, one pair of contralateral ganglia was localized in the hindgut, each of them constituted by two strongly FMRFamide-labeled neurons and one nonlabeled neuron. Their immunoreactive axons directed toward the hindgut and posterior midgut suggest an involvement of FMRFamide-like substances in adult B. amphitrite gut motility. The hindgut associated ganglia of barnacles seem to correspond to the terminal abdominal ganglia of the other crustaceans. Since they are the only residual gut ganglia in the barnacle's reduced nervous system, we can hypothesize that gut motility needs a nervous system regulation partially independent of the central nervous system.  相似文献   

8.
In the present study, Microscopy studies were performed to characterize the blood cells of the mangrove crab Episesarma tetragonum. Three types of hemocytes were observed: granulocytes, semi‐granulocytes, and hyalinocytes or agranulocytes. Hyalinocytes have a distinguished nucleus surrounded by the cytoplasm, and a peculiar cell type was present throughout the cytosol, lysosomes with hemocyte types (granules) stained red (pink). Giemsa staining was used to differentiate between the large and small hemocytes. Ehrlich's staining was used to differentiate granule‐containing cells in acidophils (55%), basophils (44%), and neutrophils (<1%). Periodic acid–Schiff staining was used to identify the sugar molecules in the cytoplasm. Cell‐mediated immune reactions including phagocytosis, encapsulation, agglutination, and peroxidase‐mediated cell adhesion are the functions of hemocytes. Agglutination reaction involves both kind of cells involved in yeast and heme‐agglutination responses in invertebrates. The beta glucan outer layer of yeast cells was recognized by hemocyte receptors. Human RBC cells were agglutinated via granulocytes. E. tetragonum hemocytes are an important animal model for studying both ultrastructural and functional activity of circulating cells. In addition, E. tetragonum hemocytes exhibited excellent antibacterial and antibiofilm activities were studied through plating and microplate assays. Biofilm inhibition was also visualized through changes in biochemical assays and morphological variations were visualized through levels in in situ microscopy analysis.  相似文献   

9.
Retrograde tracing with True Blue was combined with immunocytochemistry to determine the source of any calretinin-immunoreactive (CR-ir) nerves projecting to the rat ovary. In the ovary, a strong signal for calretinin immunoreactivity was localized in interstitial gland cells; however, no intraovarian CR-ir nerves could be demonstrated. When the superior ovarian nerve was isolated, cut, and True Blue applied to the proximal end, the fluorescent dye was retrogradely transported to a population of cells located in T-12, T-13, and L-1 dorsal root and paravertebral ganglia. There was virtually no dual labeling of cells in these ganglia with calretinin (< 0.009% dual labeling in dorsal root and <0.014% in paravertebral ganglia). However, greater than two-thirds of the True Blue-labeled cells were immediately adjacent to CR-ir cells in dorsal root ganglia. This arrangement is suggestive of a paracrine mechanism between CR-ir cells and cells projecting to the ovary. In paravertebral ganglia, 63% of cells projecting to the ovary were surrounded completely or partially by beaded CR-ir nerve fibers. The source of these fibers (sensory or preganglionic sympathetic) is unknown but hypothesized to be preganglionic. Collectively, these observations suggest a participatory role for calretinin in ovarian function, either directly via effects on the interstitial gland or indirectly by influencing neurons projecting to the ovary.  相似文献   

10.
The occurrence and localization of neurotrophins and their specific TrK receptor-like proteins in the adrenal gland of chicken, duck and ostrich were examined by immunohistochemical methods. In all species studied NGF-, TrK A- and TrK C-like immunoreactivity was observed in neurons and fibers of adrenal ganglia. Thin TrK A- and TrK C-like immunoreactive fibers were also observed among chromaffin cells. NT-3-like immunoreactivity was detected in chromaffin cells as revealed by the double immunolabelings NT-3/chromogranin A and NT-3/DbetaH. The interrenal tissue never showed IR to any neurotrophins and TrK tested, and none of the adrenal structures displayed immunoreactivity to BDNF and TrK B. Double immunolabelings NGF/TrK A, NGF/TrK C and TrK A/TrK C showed colocalization in some neurons and fibers in adrenal ganglia. In adrenal glands of the species studied, the distribution of neurotrophins and TrK receptors could suggest an involvement of NT-3 on neuronal populations innervating adrenal ganglia by means of its high affinity receptor TrK C and low affinity receptor TrK A. In addition, NGF could be utilized by neuronal populations of adrenal ganglia through its preferential receptor TrK A by an autocrine or paracrine modality of action.  相似文献   

11.
The origin of the nervus terminalis is one of the least well understood developmental events involved in generating the cranial ganglia of the forebrain in vertebrate animals. This cranial nerve forms at the formidable interface of the anteriormost limits of migrating cranial neural crest cells, the terminal end of the neural tube and the differentiating olfactory and adenohypophyseal placodes. The complex cellular interactions that give rise to the various structures associated with the sensory placode (olfactory) and endocrine placode (adenohypophysis) surround and engulf this enigmatic cranial nerve. The tortured history of nervus terminalis development (see von Bartheld, this issue, pages 13-24) reflects the lack of consensus on the origin (or origins), as well as the experimental difficulties in uncovering the origin, of the nervus terminalis. Recent technical advances have allowed us to make headway in understanding the origin(s) of this nerve. The emergence of the externally fertilized zebrafish embryo as a model system for developmental biology and genetics has shed new light on this century-old problem. Coupled with new developmental models are techniques that allow us to trace lineage, visualize gene expression, and genetically ablate cells, adding to our experimental tools with which to follow up on studies provided by our scientific predecessors. Through these techniques, a picture is emerging in which the origin of at least a subset of the nervus terminalis cells lies in the cranial neural crest. In this review, the data surrounding this finding will be discussed in light of recent findings on neural crest and placode origins.  相似文献   

12.
Pseudobranchial neurosecretory system (PSNS) is the third Neuroendocrine (NE) system found in the gill region of fishes in close association with pseudobranch/carotid labyrinth/carotid gland and can suitably be placed under the category of “Diffused NE system (DNES).” The cells belonging to this system fall under the category of “Paraneurons,” a concept proposed by Fujita and coworkers. It is found uniformly in all the catfish species and some other noncatfish group of teleosts as Atheriniformes, Channiformes, Perciformes, and Clupeiformes. The fishes, in which the PSNS is present, belong to different breathing habits. Most of these have the capacity to tolerate low O2 conditions. Leiodon cutcutia although not an air‐breathing fish, is known to retain air in its stomach for varied periods when threatened. In an attempt to verify the veracity of this system in a fish of another peculiar breathing habit, ocellated puffer fish L. cutcutia (order Tetradontiformes) was investigated. The histological observations undertaken on L. cutcutia revealed the presence of a well‐developed extrabranchial NE system. The findings are discussed in the light of the association of PSNS with chemosensory system and its evolution in fishes, especially in the view of the transition from aquatic to terrestrial life.  相似文献   

13.
The Group 1 neurosecretory cells and a proportion of the non-neurosecretory cells in the protocerebrum of the aphid Megoura viciae show gross differences in preservation when sucrose is used to increase the osmolarity of a glutaraldehyde primary fixative and an osmium tetroxide secondary fixative. The neurosecretory cells are well preserved whilst a proportion of the non-neurosecretory cells are shrunken and electron dense, the proportion of affected cells increases with the concentration of sucrose used. This difference is not seen when either the primary or the secondary fixatives are used alone, when a mixture of the primary and secondary fixatives is used or when the osmotic pressure is increased with inorganic salts.  相似文献   

14.
Expression of a sex‐specific gene in Macrobrachium rosenbergii (Mr‐Mrr), encoding a male reproduction‐related (Mrr) protein, has been identified in the spermatic ducts (SDs) and postulated to be involved in sperm maturation processes. M. rosenbergii is the only decapod that the expression and fate of the Mrr protein has been studied. To determine that this protein was conserved in decapods, we firstly used cloning techniques to identify the Mrr gene in two crabs, Portunus pelagicus (Pp‐Mrr) and Scylla serrata (Ss‐Mrr). We then investigated expression of Pp‐Mrr by in situ hybridization, and immunolocalization, as well as phosphorylation and glycosylation modifications, and the fate of the protein in the male reproductive tract. Pp‐Mrr was shown to have 632 nucleotides, and a deduced protein of 110 amino acids, with an unmodified molecular weight of 11.79 kDa and a mature protein with molecular weight of 9.16 kDa. In situ hybridization showed that Pp‐Mrr is expressed in the epithelium of the proximal, middle, distal SDs, and ejaculatory ducts. In Western blotting, proteins of 10.9 and 17.2 kDa from SDs were all positive using anti‐Mrr, antiphosphoserine/threonine, and antiphosphotyrosine. PAS staining showed they were also glycosylated. Immunolocalization studies showed Pp‐Mrr in the SD epithelium, lumen, and on the acrosomes of spermatozoa. Immunofluorescence staining indicated the acrosome of spermatozoa contained the Mrr protein, which is phosphorylated with serine/threonine and tyrosine, and also glycosylated. The Mrr is likely to be involved in acrosomal activation during fertilization of eggs. Microsc. Res. Tech., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
The S100 protein in nervous tissue appears to play important roles in regulating neuronal differentiation, glial proliferation, plasticity, development, axonal growth, and in neurogenetic processes. In fish, the adult neurogenic activity is much higher than in mammals. In this study, the localization of S100 protein was investigated in the brain of annual teleost fish, Nothobranchius furzeri, which is an emerging model organism for aging research. By immunohistochemical techniques, S100 immunoreactivity (IR) was detected in glial cells, small neurons, and fibers throughout all regions of central nervous system (CNS) with different pattern of distribution. In the telencephalon, S100 IR was seen in the olfactory bulbs and in different areas of the telencephalic hemispheres. In the diencephalon, S100 positivity was observed in the habenular nuclei of the epithalamus, in the cortical thalamic nucleus, in the dorsal, ventral and caudal portions, the latter with the posterior recessus nucleus, and in the diffuse inferior lobe of the hypothalamus, along the diencephalic ventricle and in the dorsal optic tract. In the mesencephalon, S100 IR was observed in the longitudinal tori, in the optic tectum, and along the mesencephalic ventricle. In the rhombencephalon, S100 IR was shown in valvula and body of the cerebellum, and in some nuclei of the medulla oblongata. The results suggest that S100 may play a key role in the maintenance of the CNS and in neurogenesis processes in the adulthood.  相似文献   

16.
The purpose of this study is to determine the possible changes in the localization of the four Epidermal Growth Factor Receptors and three ligands in quail lungs from the first day of hatching until the 125th after hatching using immunohistochemical methods. Immunohistochemical results demonstrated that four EGFRs and their ligands are chiefly located in the cytoplasm of cells. Additionally, ErbB4, AREG, and NRG1 are localized to the nucleus and nucleolus, but EGF is present in the nucleolus. ErbB2 was also found in the cell membrane. In the epithelium of secondary bronchi, the goblet cells only exhibited ErbB1 and ErbB2, whereas the basal and ciliated cells exhibited EGFRs and ligands immunoreactivity. The atrial granular cells displayed moderate levels of ErbB1–ErbB3 and EGF and strong levels of ErbB4, AREG, and NRG1 immunoreactivity. While the squamous atrial cells and squamous respiratory cells of air capillaries and endothelial cells of blood capillaries exhibited moderate to strong ErbB2, ErbB4, AREG, and NRG1 immunoreactivity, they had negative or weak ErbB1, ErbB3, and EGF immunoreactivity. The expression levels of ErbB2–ErbB4, EGF, AREG, and NRG1 were also detected in fibroblasts. Although ErbB2 was highly expressed in the bronchial and vascular smooth muscle cells, weak expression of ErbB1, ErbB3, AREG and EGF and moderate expression of ErbB4 and NRG1 were observed. Macrophages were only negative for ErbB1. In conclusion, these data indicate that the EGFR‐system is functionally active at hatching, which supports the hypothesis that the members of EGFR‐system play several cell‐specific roles in quail lung growth after hatching. Microsc. Res. Tech. 78:807–822, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
The current study was designed to give complete histo-and immunohistochemical features of the parabronchial epithelium of domestic fowl's (Gallus gallus domesticus) lung with special reference to Scanning electron microscope (SEM) and mean transmission electron microscope (TEM) features. The lung exhibited variable-sized atrial openings encircled by exchange tissue zones. The parabronchial atrial chambers appeared as ovoid and polygonal-shaped that separated by the well-developed interatrial septum. The deep atrial lumens had blood vessels pierced by openings that represent the infundibula. The parabronchial blood capillaries meshwork was branched and exhibited ovoid-shaped air capillaries with numerous extravasated blood vessels. By TEM, there were several air capillaries and groups of squamous and endothelial respiratory cells and the squamous cells had oval nucleus with evenly distributed chromatin. The endothelial respiratory cells had few microvilli on their free surfaces. The parabronchial tubes opened into a group of widened atria that had smooth muscle bundles at the interatrial septa. The atrial chambers led to narrow infundibula. Moreover, the lining epithelium of parabronchi, atria, infundibula, and air capillaries was formed by simple squamous epithelium. Air capillary walls were lined by two types of respiratory cells (Types-I and II). Collagen fibers were concentrated within the tunica externa layers of the parabronchial blood vessels as well as, they were observed in CT interparabronchial septa. Immunohistochemically, the elastin immunoreactivity was detected around the parabronchial blood vessels, at the base of each parabronchial atria, and in the area encircling the alveolar-capillary walls. Our work concluded that there are a relation between the fowl's lifestyle and the surrounding environmental conditions.  相似文献   

18.
This article reviews the distribution of S100 proteins in the human peripheral nervous system. The expression of S100 by peripheral glial cells seems to be a distinctive fact of these cells, independently of their localization and their ability to myelinate or not. S100 proteins expressing cells include satellite cells of sensory, sympathetic and enteric ganglia, supporting cells of the adrenal medulla, myelinating and non-myelinating Schwann cells in the nerve trunks, and the Schwann-related cells of sensory corpuscles. In addition, S100 proteins are expressed in peripheral neurons. Most of them express S100alpha protein, and a subpopulation of sensory neurons in dorsal root ganglia contains S100beta protein or S100alpha plus S100beta proteins.  相似文献   

19.
The advent of scanning electron microscopy has facilitated our understanding of the biology in relation to surface microstructure of many invertebrates. In recent years, interest in biomimetics and bio‐inspired materials has further propelled the search for novel microstructures from natural surfaces. As this search widens in diversity to nurture deeper understanding of form and function, the need often arises to examine rare specimens. Unfortunately, most methods for characterization of the microtopography of natural surfaces are sacrificial, and as such, place limiting constraints on research progress in situations where only a few rare specimens are known, such as the rich resources lodged in natural history museum collections. In this paper, we introduce the use of optical coherence tomography (OCT) as a noninvasive tool for bioimaging surface microtopography of crab shells. The technique enables the capture of microstructures down to micron level using low coherence near‐infrared light source. OCT has allowed surface microtopography imaging on crab shells to be carried out rapidly and in a nondestructive manner, compared to the scanning electron microscope technique. The microtopography of four preserved crab specimens from Acanthodromia margarita, Ranina ranina, Conchoecetes intermedius and Dromia dormia imaged using OCT were similar to images obtained from scanning electron microscope, showing that OCT imaging retains the overall morphological form during the scanning process. By comparing the physical lengths of the spinal structures from images obtained from OCT and scanning electron microscope, the results showed that dimensional integrity of the images captured from OCT was also maintained.  相似文献   

20.
Using an indirect immunoperoxidase technique, we studied the distribution of cell bodies and fibers containing somatostatin‐28 (1‐12) in the alpaca brainstem. Immunoreactive fibers were widely distributed throughout the whole brainstem: 34 brainstem nuclei/regions showed a high or a moderate density of these fibers. Perikarya containing the peptide were widely distributed throughout the mesencephalon, pons and medulla oblongata. Cell bodies containing somatostatin‐28 (1‐12) were observed in the lateral and medial divisions of the marginal nucleus of the brachium conjunctivum, reticular formation (mesencephalon, pons and medulla oblongata), inferior colliculus, periaqueductal gray, superior colliculus, pericentral division of the dorsal tegmental nucleus, interpeduncular nucleus, nucleus of the trapezoid body, vestibular nucleus, motor dorsal nucleus of the vagus, nucleus of the solitary tract, nucleus praepositus hypoglossi, and in the substantia nigra. This widespread distribution indicates that somatostatin‐28 (1‐12) is involved in multiple physiological actions in the alpaca brainstem. Microsc. Res. Tech. 78:363–374, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号