首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Studies on materials affected by large thermal gradients and rapid thermal cycling are an area of increasing interest, driving the need for real time observations of microstructural evoultion under transient thermal conditions. However, current in situ transmission electron microscope (TEM) heating stages introduce uniform temperature distributions across the material during heating experiments. Here, a methodology is described to generate thermal gradients across a TEM specimen by modifying a commercially available MEMS-based heating stage. It was found that a specimen placed next to the metallic heater, over a window, cut by FIB milling, does not disrupt the overall thermal stability of the device. Infrared thermal imaging (IRTI) experiments were performed on unmodified and modified heating devices, to measure thermal gradients across the device. The mean temperature measured within the central viewing area of the unmodified device was 3–5% lower than the setpoint temperature. Using IRTI data, at setpoint temperatures ranging from 900 to 1,300°C, thermal gradients at the edge of the modified window were calculated to be in the range of 0.6 × 106 to 7.0 × 106°C/m. Additionally, the Ag nanocube sublimation approach was used, to measure the local temperature across a FIB-cut Si lamella at high spatial resolution inside the TEM, and demonstrate “proof of concept” of the modified MEMS device. The thermal gradient across the Si lamella, measured using the latter approach was found to be 6.3 × 106°C/m, at a setpoint temperature of 1,000°C. Finally, the applicability of this approach and choice of experimental parameters are critically discussed.  相似文献   

2.
    
Environmental or in situ electron microscopy means the observation of material in its native environment, which can be gaseous or liquid, as compared to more traditional post‐mortem electron microscopy carried out under (ultra) high vacuum conditions. Experiments can be performed on bulk samples in scanning electron microscopes or on thinned samples in transmission (scanning) electron microscopes. In the latter, the movement, in real time and in situ, of nanoparticles, clusters or even single atoms on the surfaces of thinned material or within a liquid can be observed. It is argued here that due to the changes that a specimen typically undergoes during in situ observation, electron irradiation effects are difficult to evaluate and so thermodynamic parameters, such as activation energies for diffusion and segregation, which are governed by movements of only a minority of atoms in the specimen, cannot be reliably determined because of the potentially high energy transfer by the irradiating electron beam to some atoms in the sample. In order to measure diffusivities reliably, radiation effects and surface diffusion need to be excluded or kept minimal so as not to disturb the measurements, which can be checked by repeating experiments and comparing results as function of time and dose for the same position, at different positions or for different specimen thicknesses. Kinetic measurements of nucleation and growth phenomena, such as Ostwald ripening, are possibly influenced to a far lesser degree by irradiation effects, as a majority of atoms actively participate in these processes and if a small fraction of them will get extra energy from the irradiation process then their influence on the overall kinetics may be rather minor.  相似文献   

3.
In situ straining experiments in a transmission electron microscope have been carried out on a Ti3Al intermetallic alloy, with the aim of determining the microscopic mechanisms controlling glide in prism, basal and pyramidal planes. Five different antiphase boundary energies have been measured and compared with the corresponding densities of incorrect first nearest neighbour atoms. The determination of a tension–compression asymmetry in pyramidal slip, and the detailed analysis of the complex microscopic mechanisms involved illustrate the efficiency of in situ experiments to solve complex problems in plasticity. A comparison between the properties of the different slip systems shows that they are controlled by different microscopic mechanisms, none of them being of covalent origin.  相似文献   

4.
    
In-situ heating experiments have been conducted at temperatures of approximately 1200 K utilising a new design of scanning electron microscope, the CamScan X500. The X500 has been designed to optimise the potential for electron backscatter diffraction (EBSD) analysis with concomitant in-situ heating experimentation. Features of the new design include an inclined field emission gun (FEG) column, which affords the EBSD geometrical requirement of a high (typically 160 degrees) angle between the incoming electron beam and specimen surface, but avoids complications in heating-stage design and operation by maintaining it in a horizontal orientation. Our studies have found that secondary electron and orientation contrast imaging has been possible for a variety of specimen materials up to a temperature of at least 900 degrees C, without significant degradation of imaging quality. Electron backscatter diffraction patterns have been acquired at temperatures of at least 900 degrees C and are of sufficient quality to allow automated data collection. Automated EBSD maps have been produced at temperatures between 200 degrees C and 700 degrees C in aluminium, brass, nickel, steel, quartz, and calcite, and even at temperatures >890 degrees C in pure titanium. The combination of scanning electron microscope imaging techniques and EBSD analysis with high-temperature in-situ experiments is a powerful tool for the observation of dynamic crystallographic and microstructural processes in metals, semiconductor materials, and ceramics.  相似文献   

5.
    
As a result of loading with an external force during the wear process, coating deforms uniformly. After a certain limit load is exceeded, coating deformation is localised through the formation of the so-called shear bands. It has been showed experimentally the process of shear bands formation. The microstructural characterisation before and after the mechanical tests was performed using scanning and transmission electron microscopy (SEM and TEM) on cross-sections of the samples. The analysis indicated that in the case of multilayer coatings where the ratio of the metallic to the ceramic phase is 1:1, the shear bands are formed at an angle of 45°. With a greater proportion of the ceramic phase to metallic (ratio 1:2), the shear band changed the shear angle from ∼45° to ∼90°. Mechanical in situ tests were carried out in the chambers of SEM and TEM. The scratch tests in the SEM were done with the simultaneous observation of the phenomena occurring on the surface of the tested materials showed that at a scratch force of 0.04 N, the additional outer a-C:H layer was damaged, which was shown in the form of a fault in the force–displacement diagram, and in the form of splits visible in the SEM image. However, the application of this additional layer had a positive effect on the wear mechanism of the entire coating structure. The test also indicated that in the case of coatings with phases ratio 1:2 and 1:4 (metallic to ceramic), the characteristics of the brittle material were demonstrated, unlike the coating with a 1:1 phase ratio, where plastic properties predominated. However, for the 1:2 phase ratio coating, the chip was more ductile than for the chip formed when testing a 1:4 phase ratio coating. For in situ mechanical testing in the TEM, a straining holder was used. The test showed that the shear band angle for a 1:1 ratio coating has changed from 45° to 90° due to the different direction of force interaction.  相似文献   

6.
    
Trustworthy preparation and contacting of micron‐sized batteries is an essential task to enable reliable in situ TEM studies during electrochemical biasing. Some of the challenges and solutions for the preparation of all‐solid‐state batteries for in situ TEM electrochemical studies are discussed using an optimized focused ion beam (FIB) approach. In particular redeposition, resistivity, porosity of the electrodes/electrolyte and leakage current are addressed. Overcoming these challenges, an all‐solid‐state fluoride ion battery has been prepared as a model system for in situ TEM electrochemical biasing studies and first results on a Bi/La0.9Ba0.1F2.9 half‐cell are presented. Microsc. Res. Tech. 79:615–624, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
The imaging of microscopic structures at nanometre-scale spatial resolution in a liquid environment is of interest for a wide range of studies. Recently, a liquid flow transmission electron microscopy (TEM) holder equipped with a microfluidic cell has been developed and shown to exhibit flow of nanoparticles through an electron transparent viewing window. Here we demonstrate the application of the flow cell system for both scanning and conventional transmission electron microscopy imaging of immobilized nanoparticles with a resolution of a few nanometres in liquid water of micrometre thickness. The spatial resolution of conventional TEM bright field imaging is shown to be limited by chromatic aberration due to multiple inelastic scattering in the water, and we demonstrate that the liquid in the cell can be displaced by a gas phase that forms under intense electron irradiation. Our data suggest that under appropriate conditions, TEM imaging with a liquid flow cell is a promising method for understanding the in situ behaviour of nanoscale structures in a prescribed and dynamically changing chemical environment.  相似文献   

8.
A jet-polishing technique has been developed for use in the preparation of microtensile specimens for HVEM examination. The technique requires the use of a pair of Teflon sheet inserts with rectangular openings in a conventional specimen holder. When inserts with optimum opening dimensions are used, specimens having elliptical holes close to the center of the gauge section are produced with large electron-transparent areas at both ends of the long axis. Annealed metal specimens, such as brass or aluminum, prepared by this method are stronger, and can be handled more easily, than those prepared by conventional methods. An advantage of the technique is that reproducible electropolishing conditions and the automatic detection of perforation by a photocell can be used in the normal way.  相似文献   

9.
    
With higher contrast and transparency due to the absence of epon and stereo-viewing effect due to thicker sections than conventional electron microscopy as methodological advantages, the renal glomerular slits were re-examined in embedment-free section electron microscopy. In addition to clear demonstration of strands bridging the slits in forms of ladders with highly irregular intervals and various extension-directions and length, this study disclosed clearly for the first time in the \"section\" TEM thin sheets which partially spanned the slit together with the strand-ladders. No strands were found to align in forms of typical zippers in normal kidney. Furthermore, en-face ultrastructure of the basal lamina in situ was clearly demonstrated in superimposed sites of the endothelial fenestrae with the slits.  相似文献   

10.
Direct observation of the behaviour of individual inorganic fullerenes (IF)‐MoS2 nanoparticles in a sliding interface is essential for the understanding of the influence of the intrinsic characteristics of the nanoparticles on their lubrication mechanisms, when they are used as additives in lubricant oil. In this work, in situ transmission electron microscopy sliding tests were performed on two different types of MoS2 nanoparticles synthesised by two different methods. It is shown that the IF‐MoS2 nanoparticles having perfect structure with a high crystalline order and without defects are able to roll and to slide under the combined effect of pressure and shear stress, whereas the IF‐MoS2 nanoparticles containing many defects exfoliate immediately in the same conditions to deliver MoS2 layers covering the mating surfaces. A link between these results, the lubrication mechanisms of the nanoparticles and their tribological properties at the macro‐scale was established, proving that the lubrication mechanisms of fullerenes depend on their intrinsic characteristics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Intestinal chloride (Cl) transport is disturbed in a number of diseases. X-ray microanalysis can be used to study the distribution of Cl and other ions in intestinal epithelial cells. In this study it was attempted to establish an experimental system that retains the in vivo elemental composition of intestinal epithelial cells. An in vitro system was set up in which a segment of rat intestine was mounted in a bath and perfused with different fluids. The chloride in the bath or in the perfusion fluid could be exchanged for gluconate or bromide to determine the direction of chloride fluxes. An in situ system was set up in which the animal was anesthetized and a segment of the intestine was perfused with different solutions. In the in vitro experiments the concentration of Na and Cl in the epithelial cells increased and that of K decreased. These changes occurred within the first 30 minutes of incubation. Uptake of chloride occurred mainly from the bath, as seen in experiments where bromide was used as a chloride analog. The concentration gradient between bath and tissue determined the extent of chloride uptake. Addition of glucose to the perfusion fluid and bath did not improve the results. In the in situ system, preservation of the intracellular ion composition was better. Acceptable results were obtained with perfusion with Krebs-Ringer's buffer without glucose for 30 minutes. In this case, the elemental content of the cell did not change appreciably during incubation. If glucose was added, the Na concentration increased in comparison to the control, both in crypt and villus cells. It is concluded that the intestinal epithelium is a sensitive system, very prone to disturbance of its homeostasis. However, the in situ system can be used in studies of agonist-induced ion transport.  相似文献   

12.
Sintering of green samples of alumina produced by ice‐templating was followed in situ in an environmental scanning electron microscope (ESEM) up to temperatures as high as 1375°C. These alumina samples with well‐defined architectures are of great interest in the field of materials science due to their high specific strength (especially in compression), low density and adaptable porosity. For the present study, they also have the advantage to exhibit an important topography, inducing interesting contrast when imaged in an ESEM. Improvements of the imaging conditions in the ESEM were essential to really follow the sintering process involving formation of necks between grains or shift of the centre of grains. This paper describes the improvements made and the results observed on the sintering process of alumina green samples processed by ice‐templating.  相似文献   

13.
This article presents a novel method to measure the in situ thickness of porous alumina (PA) films. The PA films were prepared in oxalic acid at 30, 40, and 60 V direct current. Based on the atomic force microscope measurements, PA film porosities and refractive indexes measurements were acquired. With the observation of the reflectance spectra of PA films over the wavelength range 400-1000 nm, the nondestructive thickness measurement of the PA films were accurate and were found to be 3.66, 7.76, and 11.38 mum, respectively. Experiments showed that when the applied voltage increased, the pores diameters and interpore distances were enlarged, and the interference pattern was stronger and exhibited a greater number of oscillations over the given wavelength range, which indicated that the PA film's thickness increased. Our results match with the theoretical predictions and analysis quite well.  相似文献   

14.
    
The aim of this work is to make progress towards the development of 3D reconstruction as a legitimate alternative to traditional 2D characterization of soot. Time constraints are the greatest opposition to its implementation, as currently reconstruction of a single soot particle takes around 5–6 h to complete. As such, the accuracy and detail gains are currently insufficient to challenge 2D characterization of a representative sample (e.g. 200 particles). This work is a consideration of the optimization of the steps included within the computational reconstruction and manual segmentation of soot particles. Our optimal process reduced the time required by over 70% in comparison to a typical procedure, whilst producing models with no appreciable decrease in quality.  相似文献   

15.
    
A new method is proposed to measure the linear coefficient of thermal expansion (CTE) of solid metals and ceramics of micron-sized dimensions. This approach uses a focused ion beam (FIB) to extract and transfer a slab of the sample, typically (15–20) ×10 × (3–5) µm onto a Micro-Electro-Mechanical Systems (MEMS) in situ heating holder inside a scanning electron microscope (SEM). CTE is thereafter calculated by image correlating the change of length (ΔL) between the fiducial marks on the slab as a function of temperature, taking advantage of the temperature calibration of the MEMS heating holder and nanometre resolution of the scanning electron microscope. The CTE results are validated to be consistent with standard copper and silicon. We further demonstrate the method on a graphene platelet reinforced copper composite and a graphite filler phase isolated from a bulk sample, these represent materials that cannot be practically synthesised or isolated at the macro-scale. Errors associated with the measurement are discussed.  相似文献   

16.
    
A cross‐section sample preparation technique is described for transmission electron microscopy studies of metallic materials. The technique uses jet electro‐polishing for the final perforation. Examples are provided of using this technique for copper‐support/copper‐films/copper‐support multilayer structures, grown by electro‐deposition. The samples prepared by our current technique are compared with the ones made by ion‐milling. The technique is also applicable to materials which are susceptible to ion beam and thermal damages. Microsc. Res. Tech. 76:476–480, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
对X80管线钢焊接接头3个区域的试样在透射电子显微镜(TEM)下进行原位拉伸试验,通过观察各个区域裂纹的萌生与扩展过程,对其微观断裂行为进行了研究和分析。结果表明:母材区中,裂纹萌生扩展主要以多裂纹起裂为主,表现为沿晶扩展的断裂形式,最后造成在切应力作用下的剪切脆性断裂;热影响区内,主裂纹首先在切应力作用下以45°方向起裂,整个扩展过程是主裂纹钝化、位错发射、主裂纹前方无位错区形成、微裂纹形核、主裂纹与微裂纹连接扩展这一多尺度过程不断重复的过程,最后导致准解理穿晶断裂;焊缝区中,从主裂纹分支出多条裂纹,裂纹均以与拉伸轴成45°的方向起裂,表现为沿晶与穿晶混合的断裂模式,最后造成穿晶脆性解理断裂。  相似文献   

18.
    
Nowadays, the implementation of sophisticated in situ electron microscopy tests is providing new insights in several areas. In this work, an in situ high‐temperature strain test into a scanning electron microscope was developed. This setup was used to study the grain boundary sliding mechanism and its effect on the ductility dip cracking. This methodology was applied to study the mechanical behaviour of Ni‐base filler metal alloys ERNiCrFe‐7 and ERNiCr‐3, which were evaluated between 700°C and 1000°C. The ductility dip cracking susceptibility (threshold strain; εmin) for both alloys was quantified. The εmin of ERNiCrFe‐7 and ERNiCr‐3 alloys were 7.5% and 16.5%, respectively, confirming a better resistance of ERNiCr‐3 to ductility dip cracking. Furthermore, two separate components of grain boundary sliding, pure sliding (Sp) and deformation sliding (Sd), were identified and quantified. A direct and quantitative link between grain boundary tortuosity, grain boundary sliding and ductility dip cracking resistance has been established for the ERNiCrFe‐7 and ERNiCr‐3 alloys.  相似文献   

19.
20.
    
《Lubrication Science》2018,30(2):65-72
This paper presents a “green” way of in situ forming ionic liquids (ILs) as high‐temperature lubricants by dissolving high content of lithium bis(trifluoromethylsulfonyl)imide in lard oil (LO). Nuclear magnetic resonance spectroscopy result indicated that lithium bis(trifluoromethylsulfonyl)imide could have a reaction with triacylglycerols, which are the major component of LO and formed the IL (Li[triacylglycerol])bis(trifluoromethylsulfonyl)imide. Differential scanning calorimetry result shown that ILs could effectively enhance the thermal‐oxidation stability of LO. Tribological behaviours of lubricant application in steel/steel contacts were evaluated on an Optimol SRV‐IV oscillating reciprocating friction and wear tester at 250°C. It was found that the in situ formed ILs possessed excellent friction‐reducing and antiwear properties in LO compared with perfluoropolyether (as a reference lubricant) under the same conditions. The wear mechanisms are tentatively discussed according to the morphology observation of worn surfaces of steel discs by scanning electron microscope and the surface composition analysis by X‐ray photoelectron spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号