首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor suppressor genes are generally viewed as being recessive at the cellular level, so that mutation or loss of both tumor suppressor alleles is a prerequisite for tumor formation. The tumor suppressor gene, p53, is mutated in approximately 50% of human sporadic cancers and in an inherited cancer predisposition (Li-Fraumeni syndrome). We have analyzed the status of the wild-type p53 allele in tumors taken from p53-deficient heterozygous (p53+/-) mice. These mice inherit a single null p53 allele and develop tumors much earlier than those mice with two functional copies of wild-type p53. We present evidence that a high proportion of the tumors from the p53+/- mice retain an intact, functional, wild-type p53 allele. Unlike p53+/- tumors which lose their wild-type allele, the tumors which retain an intact p53 allele express p53 protein that induces apoptosis following gamma-irradiation, activates p21(WAF1/CIP1) and Mdm2 expression, represses PCNA expression (a negatively regulated target of wild-type p53), shows high levels of binding to oligonucleotides containing a wild-type p53 response element and prevents chromosomal instability as measured by comparative genomic hybridization. These results indicate that loss of both p53 alleles is not a prerequisite for tumor formation and that mere reduction in p53 levels may be sufficient to promote tumorigenesis.  相似文献   

2.
We have previously shown that the tumor suppressor gene for hepatocellular carcinoma (HCC) without cirrhosis may be located on chromosome 5q35-qter. In this study, we analyzed nine cases of primary HCC without cirrhosis using probes from the MCC and APC genes, which are in the region 5q21-22. None of the informative cases had allele loss detected by these probes, whereas the probe lambda MS8 for the region 5q35-qter showed allele loss in six out of six informative cases. The results confirm that the putative tumor suppressor gene for HCC without cirrhosis on chromosome 5q is distinct from the MCC and APC genes.  相似文献   

3.
Comparative genomic hybridization analysis was performed to identify chromosomal imbalances in 24 human malignant mesothelioma (MM) cell lines derived from untreated primary tumors. Chromosomal losses accounted for the majority of genomic imbalances. The most frequent underrepresented segments were 22q (58%) and 15q1.1-21 (54%); other recurrent sites of chromosomal loss included 1p12-22 (42%), 13q12-14 (42%), 14q24-qter (42%), 6q25-qter (38%), and 9p21 (38%). The most commonly overrepresented segment was 5p (54%). DNA sequence amplification at 3p12-13 was observed in two cases. Whereas some of the regions of copy number decreases (i.e., segments in 1p, 6q, 9p, and 22q) have previously been shown to be common sites of karyotypic and allelic loss in MM, our comparative genomic hybridization analyses identified a new recurrent site of chromosomal loss within 15q in this malignancy. To more precisely map the region of 15q deletion, loss of heterozygosity analyses were performed with a panel of polymorphic microsatellite markers distributed along 15q, which defined a minimal region of chromosomal loss at 15q11.1-15. The identification of frequent losses of a discrete segment in 15q suggests that this region harbors a putative tumor suppressor gene whose loss/inactivation may contribute to the pathogenesis of many MMs.  相似文献   

4.
To identify recurrent chromosomal imbalances in pancreatic adenocarcinoma, 27 tumors were analyzed by using comparative genomic hybridization. In 23 cases chromosomal imbalances were found. Gains of chromosomal material were much more frequent than losses. The most common overrepresentations were observed on chromosomes 16p (eight cases), 20q (seven cases), 22q (six cases), and 17q (five cases) and under-representations on a subregion of chromosome 9p (eight cases). Distinct high-level amplifications were found on 1p32-p34, 6q24, 7q22, 12p13, and 22q. These data provide evidence for a number of new cytogenetically defined recurrent aberrations which are characteristic of pancreatic carcinoma. The overrepresented or underrepresented chromosomal regions represent candidate regions for potential oncogenes and tumor suppressor genes, respectively, possibly involved in pancreatic tumorigenesis.  相似文献   

5.
Conventional cytogenetics and comparative genomic hybridization (CGH) were utilized to identify recurrent chromosomal imbalances in 12 pancreatic adenocarcinoma cell lines. Multiple deletions and gains were observed in all cell lines. Losses affecting chromosomes or chromosome arms 9p, 13, 18q, 8p, 4, and 10p and gains involving chromosome arms or bands 19q13.1, 20q, 5p, 7p, 11q, 3q25-qter, 8q24, and 10q were commonly observed. Interestingly, 19 distinct sites of high-level amplification were found by CGH. Recurrent sites involved 19q13.1 (6 cases), 5p (3 cases), and 12p and 16p (2 cases). Amplification of KRAS2 was demonstrated in 2 cell lines and that of ERBB2 in another. To define the occurrence of chromosome 19 amplification further, two-dimensional analysis of NotI genomic restriction digests and fluorescence in situ hybridization using probes from band 19q13.1 were utilized. High-level amplification of overlapping sets of chromosome 19 NotI fragments was exhibited in 3 cell lines of which 2 showed amplification of both OZF and AKT2 genes and 1 that of AKT2 alone. In these 3 cell lines, amplification of chromosome 19 sequences was associated with the presence of a homogeneously staining region. Our results provide evidence of heterogeneity in the extent of chromosome 19 amplification and suggest the existence of yet unknown amplified genes that may play a role in pancreatic carcinogenesis.  相似文献   

6.
Cytogenetic and molecular analysis of DNA sequences with highly polymorphic microsatellite markers have implicated allele loss in several chromosomal regions including 3p, 6p, 6q, 8p, 9p, 9q, 11p and 14q in the pathogenesis of sporadic renal cell carcinomas (RCCs). Deletions involving the long arm of chromosome 7 have not been described in RCCs although they have been seen in several other tumor types. However, there have been no detailed analysis of loss of heterozygosity (LOH) of 7q sequences in sporadic RCCs. We therefore studied LOH for DNA sequences on 7q with 10 highly polymorphic markers in 92 matched normal/tumor samples representing sporadic RCCs including papillary, nonpapillary, and oncocytomas in order to determine whether allelic loss could be detected in a tumor type with no visible 7q rearrangements at the cytogenetic level. We found chromosome 7q allele loss in 59 of 92 cases (64%) involving one, two, or more microsatellite markers. The most common allele loss included loci D7S522 (24%) and D7S649 (30%) at 7q31.1-31.2, a region that contains one of the common fragile sites, FRA7G. By comparative multiplex PCR analysis, we detected a homozygous deletion of one marker in the 7q 31.1-31.2 region in one tumor, RC21. These results support the idea that a tumor suppressor gene in 7q31 is involved in the pathogenesis of sporadic renal cell carcinomas.  相似文献   

7.
The high incidence of allelic imbalance on the long arm of chromosome 16 in breast cancer suggests its involvement in the development and progression of the tumor. Several loss of heterozygosity (LOH) studies have led to the assignment of commonly deleted regions on 16q where tumor suppressor genes may be located. The most recurrent LOH regions have been 16q22.1 and 16q22.4-qter. The aim of this study was to gain further insight into the occurrence of one or multiple "smallest regions of overlap" on 16q in a new series of breast carcinomas. Hence, a detailed allelic imbalance map was constructed for 46 sporadic breast carcinomas, using 11 polymorphic microsatellite markers located on chromosome 16. Allelic imbalance of one or more markers on 16q was shown by 30 of the 46 tumors (65%). Among these 30 carcinomas, LOH on the long arm of chromosome 16 was detected at all informative loci in 19 (41%); 13 of them showed allelic imbalance on the long but not on the short arm, with the occurrence of variable "breakpoints" in the pericentromeric region. The partial allelic imbalance in 11 tumors involved either the 16q22.1-qter LOH region or interstitial LOH regions. A commonly deleted region was found between D16S421 and D16S289 on 16q22.1 in 29 of the 30 tumors. The present data argue in favor of an important involvement of a tumor suppressor gene mapping to 16q22.1 in the genesis or progression of breast cancer.  相似文献   

8.
To investigate chromosomal events that underlie formation and progression of meningiomas, we have examined a set of 18 benign (WHO grade I), 15 atypical (grade II), and 13 anaplastic/malignant (grade III) meningiomas for loss of heterozygosity (LOH) on chromosomes 1p, 6p, 9q, 10q, and 14q. Frequent loss of loci on these chromosomes was seen in grade II and grade III tumors, specifically, 14q (II and III, 47 and 55%), 1p (40 and 70%), and 10q (27 and 40%). In contrast, LOH for these loci was infrequent in benign meningiomas, specifically, 14q (0%), 1p (11%), and 10q (12%). The smallest common regions of deletion that could be defined were 14q24-q32, 1p32-pter, and 10q24-qter. These observations indicate the likely presence of tumor suppressor genes in these regions that are involved in the development of WHO grade II and grade III meningiomas. Because LOH for loci on chromosomes 1p and 10q was found in tumors of all grades and because the frequency of LOH in all three regions increased with tumor grade, these results would support a model for the formation of aggressive meningiomas through tumor progression.  相似文献   

9.
Using comparative genomic hybridization (CGH), we have identified and mapped regions of DNA amplification in primary and metastatic osteosarcomas. Samples were obtained from four patients and ten independent xenografts. Sixty-four percent of the tumors showed increased DNA-sequence copy numbers, affecting 23 different chromosomal sites. Most of these regions were not previously associated with the development and/or progression of these tumors. Amplicons originating from 1q21-q23, 6p, 8q23-qter, and 17p11-p12 were observed most frequently. The 6p and 17p11-p12 amplicons seem to be specific for osteosarcomas, indicating that these regions may harbor genes relevant for the development of these tumors.  相似文献   

10.
Deletions and translocations resulting in loss of distal 1p-material are known to occur frequently in advanced neuroblastomas. Fluorescence in situ hybridisation (FISH) showed that 17q was most frequently involved in chromosome 1p translocations. A review of the literature shows that 10 of 27 cell lines carry 1;17 translocations. Similar translocations were also observed in primary tumours. Together with the occurrence of a constitutional 1;17 translocation in a neuroblastoma patient, these observations suggest a particular role for these chromosome re-arrangements in the development of neuroblastoma. Apart from the loss of distal 1p-material, these translocations invariably lead to extra copies of 17q. This also suggested a possible role for genes on 17q in neuroblastoma tumorigenesis. Further support for this hypothesis comes from the observation that in those cell lines without 1;17 translocations, other chromosome 17q translocations were present. These too lead to extra chromosome 17q material. Molecular analysis of 1;17 translocation breakpoints revealed breakpoint heterogeneity both on 1p and 17q, which suggests the involvement of more than 2 single genes on 1p and 17q. The localisation of the different 1p-breakpoints occurring in 1;17 translocations in neuroblastoma are discussed with respect to the recently identified candidate tumor suppressor regions and genes on 1p. In this study, we focused on the molecular analysis of the 17q breakpoints in 1;17 translocations. Detailed physical mapping of the constitutional 17q breakpoint allowed for the construction of a YAC contig covering the breakpoint. Furthermore, a refined position was determined for a number of 17q breakpoints of 1;17 translocations found in neuroblastoma cell lines. The most distal 17q breakpoint was identified in cell line UHG-NP and mapped telomeric to cosmid cCI17-1049 (17q21). This suggests that genes involved in a dosage-dependent manner in the development of neuroblastoma map in the distal segment 17q22-qter. Future studies aim at the molecular cloning of 1;17 translocation breakpoints and at deciphering the mechanisms leading to 1;17 translocations and possibly to the identification of neuroblastoma genes at or in the vicinity of these breakpoints.  相似文献   

11.
Loss of heterozygosity on chromosome 11q23.3-qter is a frequent event in ovarian carcinoma, implying the existence of an important ovarian tumor suppressor gene(s) within the region. To refine a minimum region(s) of loss, 67 ovarian tumors were analyzed for loss of heterozygosity with eight microsatellite markers spanning 11q23.3-qter. Forty tumors (61%) demonstrated allelic losses. Twenty-seven of these had allelic losses on only part of 11q23.3, which enabled the identification of two distinct regions likely to harbor ovarian tumor suppressor genes. The proximal region, flanked by markers D11S925 and D11S1336, is less than two megabases while the second more distal region, flanked by markers D11S912 and D11S439, is approximately eight megabases. The refinement of these candidate tumor suppressor gene loci will facilitate future loss of heterozygosity studies and enable the isolation of candidate genes from these regions.  相似文献   

12.
Epithelioid sarcomas are soft tissue tumors with an indolent, but potentially aggressive, clinical behavior. Distinction from other benign and malignant entities may be a diagnostic dilemma. In this study, we evaluate the presence of loss of heterozygosity (LOH) of chromosome 22q in tumor DNA from 13 epithelioid sarcomas, four epithelioid angiosarcomas, and two epithelioid hemangioendotheliomas, and investigate its possible role in diagnosis. LOH was detected in 6 of 10 (60%) of the informative epithelioid sarcomas. No allele loss was detected in the informative vascular tumors, three angiosarcomas, and two hemangioendotheliomas. Chromosome 22q carries the locus of a tumor suppressor gene, the neurofibromatosis 2 (NF2) gene, which has been shown to be lost or mutated in some NF2-related tumors, sporadic meningiomas, and vestibular schwannomas, as well as a few other tumors. Our data suggest that a region of chromosome 22q may be the locus of a tumor suppressor gene involved in the tumorigenesis of these neoplasms. Genetic alterations of yet-unknown tumor suppressor genes in this region, or even the NF2 tumor suppressor gene, may play a role in epithelioid sarcomas tumorigenesis. The fact that LOH was only detected in epithelioid sarcomas and not in the vascular tumors studied suggests a possible role for this marker in diagnosis.  相似文献   

13.
Although previous studies have demonstrated a relatively high incidence of loss of heterozygosity (LOH) on chromosomes 1p, 11q and 14q in neuroblastoma, it is unclear whether LOH occurs specifically on these chromosomes or not. It might be due to the lack of allelotyping of neuroblastoma. When we assessed all 22 autosomes and chromosome X for LOH in 81 cases of neuroblastoma using 43 polymorphic DNA markers, a high incidence of LOH (> 30%) was observed on three chromosomal arms, 2q (30%), 9p (36%) and 18q (31%). Moreover, 9p LOH in the tumours showed statistically significant association with advanced stage of the disease and poor prognosis. Therefore, tumour suppressor genes on chromosomes 2q, 9p and 18q could be involved in the genesis and/or progression of neuroblastoma. Particularly, the gene on chromosome 9p may be associated with progression of neuroblastoma.  相似文献   

14.
Comparative genomic hybridization (CGH) analyses were performed on 27 human pleural mesothelioma tumour specimens, consisting of 18 frozen tumours and nine paraffin-embedded tumours, to screen for gains and losses of DNA sequences. Copy number changes were detected in 15 of the 27 specimens with a range from one to eight per specimen. On average, more losses than gains of genetic material were observed. The loss of DNA sequences occurred most commonly in the short arm of chromosome 9 (p21-pter), in 60% of the abnormal specimens. Other losses among the abnormal specimens were frequently detected in the long arms of chromosomes 4 (q31.1-qter, 20%), 6 (q22-q24, 33%), 13 (33%),14 (q24-qter, 33%) and 22 (q13, 20%). A gain in DNA sequences was found in the long arm of chromosome 1 (cen-qter) in 33% of the abnormal specimens. Our analysis is the first genome-wide screening for gains and losses of DNA sequences using comparative genomic hybridization in malignant pleural mesothelioma tumours. The recurrent DNA sequence changes detected in this study suggest that the corresponding chromosomal areas most probably contain genes important for the initiation and progression of mesothelioma.  相似文献   

15.
Deletions of tumour-suppressor genes can be detected by loss of heterozygosity (LOH) studies, which were performed on 23 cases of adenocarcinoma of the oesophagus, using 120 microsatellite primers covering all non-acrocentric autosomal chromosome arms. The chromosomal arms most frequently demonstrating LOH were 3p (64% of tumours), 5q (45%), 9p (52%), 11p (61%), 13q (50%), 17p (96%), 17q (55%) and 18q (70%). LOH on 3p, 9p, 13q, 17p and 18q occurred mainly within the loci of the VHL, CDKN2, Rb, TP53 and DCC tumour-suppressor genes respectively. LOH on 5q occurred at the sites of the MSH3 mismatch repair gene and the APC tumour-suppressor gene. 11p15.5 and 17q25-qter represented areas of greatest LOH on chromosomes 11p and 17q, and are putative sites of novel tumour-suppressor genes. LOH on 9p was significantly associated with LOH on 5q, and tumours demonstrating LOH at both the CDKN2 (9p21) and MSH3 (5q11-q12) genes had a significantly higher fractional allele loss than those retaining heterozygosity at these sites. Six of nine carcinomas displaying microsatellite alterations also demonstrated LOH at CDKN2, which may be associated with widespread genomic instability. Overall, there are nine sites of LOH associated with oesophageal adenocarcinoma.  相似文献   

16.
Familial predisposition to Wilms' tumor (WT), a childhood kidney tumor, is inherited as an autosomal dominant trait. For most WT families studied, the 11p13 gene WT1 and genomic regions implicated in tumorigenesis in a subset of tumors can be ruled out as the site of the familial predisposition gene. Following a genome-wide genetic linkage scan, we have obtained strong evidence (log of the odds ratio = 4.0) in five families for an inherited WT predisposition gene (FWT2) at 19q13.3-q13.4. In addition, we observed loss of heterozygosity at 19q in tumors from individuals from two families in which 19q can be ruled out as the site of the inherited predisposing mutation. From these data, we hypothesize that alterations at two distinct loci are critical rate-limiting steps in the etiology of familial WTs.  相似文献   

17.
BACKGROUND: Osteochondroma most frequently arises sporadically and as a solitary lesion, but also may arise as multiple lesions characterizing the autosomal dominant disorder hereditary multiple exostoses (HME) and the contiguous gene syndromes Langer-Giedion and DEFECT-11 syndromes. HME is genetically heterogeneous with association of three loci including 8q24.1 (EXT1), 11p11-12 (EXT2), and 19p (EXT3). Constitutional chromosomal microdeletions of 8q24.1 and 11p11-12 are features of the Langer-Giedion and DEFECT-11 syndromes, respectively. Cytogenetic studies of osteochondroma are rare. METHODS: Cytogenetic analysis was performed on 34 osteochondroma specimens from 22 patients with sporadic lesions and 4 patients with HME utilizing standard methodologies. Fluorescence in situ hybridization with chromosome specific probes was performed on three cases to define structural rearrangements further. RESULTS: Clonal abnormalities were detected in ten cases. Notably, deletion of 11p11-13 was observed in one case (a sporadic tumor) and loss or rearrangement of 8q22-24.1 in eight cases (seven sporadic and one hereditary tumor). CONCLUSIONS: These findings: 1) confirm previous observations of 8q24.1 karyotypic anomalies in sporadic osteochondroma, 2) reveal the presence of somatic chromosomal anomalies in hereditary osteochondromata, 3) suggest that similar to hereditary lesions, sporadic osteochondromas also are genetically heterogeneic (involvement of both 8q24.1 and 11p11-12), and 4) support the hypothesis that loss or mutation of EXT1 and EXT2, two putative tumor suppressor genes, may be important in the pathogenesis of sporadic as well as hereditary osteochondromata.  相似文献   

18.
Germ-line mutations in the BRCA1 and BRCA2 genes confer a predisposition to breast as well as ovarian carcinoma. Except for loss of the respective wild-type allele, somatic genetic changes needed for the progression of inherited ovarian tumors are unknown. A genome-wide search for such alterations was performed by comparative genomic hybridization analysis on BRCA1 and BRCA2 mutation-positive (n = 20) ovarian carcinoma specimens. Comparison with sporadic ovarian carcinomas (n = 20) revealed extensive genetic similarity between the inherited and sporadic carcinomas with the sole exception of a frequent gain of 2q24-q32 in the inherited group, suggesting the presence of an oncogene at 2q24-q32 operating in the absence of BRCA1 function. The overall similarity of gains and losses by comparative genomic hybridization suggests a common main pathway in tumor progression of both inherited and sporadic ovarian carcinomas.  相似文献   

19.
We investigated chromosomal aberrations in meningiomas using newly developed comparative genomic hybridization (CGH) technique and compared the results with the proliferating potential of the tumors. This technique permits the entire genome to be surveyed in one session of experiments. Our results revealed chromosomal aberrations in 5 out of 10 (50%) of the tumor samples studied. Losses of the distal parts of chromosome 1p (5 out of 10) and 22q (3 out of 10) were the two most frequent chromosomal aberrations. Losses and/or gains in other regions were only sporadic. The MIB-1 staining indices (MIB-SI, %) were 1.9 +/- 0.9% (mean +/- SD) in benign (n = 8), 4.5% in atypical (n = 1), and 11.7% in anaplastic (n = 1) meningiomas. The comparison of MIB-SI between the tumors with (2.3 +/- 0.6%) and without (1.6 +/- 0.3%) chromosomal aberrations demonstrated a trend towards an increased MIB-SI in meningiomas with chromosomal aberrations (p < 0.07) by unpaired Student's t-test. This study suggests that alterations in chromosomes 1p and 22q could be a primary focus of further detailed assessment of tumorigenesis and in understanding the biological behavior of meningiomas.  相似文献   

20.
Allelotype and replication error (RER) phenotype analyses were performed to clarify the pathogenetic significance of inactivation of tumor suppressor genes and genomic instability in the genesis and progression of small cell lung carcinoma (SCLC). We examined 37 cases of SCLC for loss of heterozygosity (LOH) and microsatellite instability at 49 loci on all 39 nonacrocentric chromosomal arms. LOH was frequently (>70%) detected on chromosomes 3p (29/32, 90.6%), 5q (15/21, 71.4%), 13q (25/26, 96.2%), 17p (22/25, 88.0%), and 22q (24/33, 72.7%). Frequent LOH (>70%) on these loci was observed even among seven cases of stage I tumors. The incidence of LOH on all 39 nonacrocentric chromosomal arms was not significantly different between primary tumors and metastases. These results suggest that inactivation of multiple tumor suppressor genes accumulates relatively early during progression of SCLC and it may be responsible for clinically and biologically aggressive phenotype of SCLC. RER was observed in 6/37 (16.2%) of SCLC, however, RER at multiple loci was observed only in two cases. Therefore, it was indicated that genomic instability is uncommon, but might play a role in the genesis of a small subset of SCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号