首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The wide potential applications of humanoid robots require that the robots can walk in complex environments and overcome various obstacles. To this end, we address the problem of humanoid robots stepping over obstacles in this paper. We focus on two aspects, which are feasibility analysis and motion planning. The former determines whether a robot can step over a given obstacle, and the latter discusses how to step over, if feasible, by planning appropriate motions for the robot. We systematically examine both of these aspects. In the feasibility analysis, using an optimization technique, we cast the problem into global optimization models with nonlinear constraints, including collision-free and balance constraints. The solutions to the optimization models yield answers to the possibility of stepping over obstacles under some assumptions. The presented approach for feasibility provides not only a priori knowledge and a database to implement stepping over obstacles, but also a tool to evaluate and compare the mobility of humanoid robots. In motion planning, we present an algorithm to generate suitable trajectories of the feet and the waist of the robot using heuristic methodology, based on the results of the feasibility analysis. We decompose the body motion of the robot into two parts, corresponding to the lower body and upper body of the robot, to meet the collision-free and balance constraints. This novel planning method is adaptive to obstacle sizes, and is, hence, oriented to autonomous stepping over by humanoid robots guided by vision or other range finders. Its effectiveness is verified by simulations and experiments on our humanoid platform HRP-2.  相似文献   

2.
We propose a general and practical planning framework for generating 3-D collision-free motions that take complex robot dynamics into account. The framework consists of two stages that are applied iteratively. In the first stage, a collision-free path is obtained through efficient geometric and kinematic sampling-based motion planning. In the second stage, the path is transformed into dynamically executable robot trajectories by dedicated dynamic motion generators. In the proposed iterative method, those dynamic trajectories are sent back again to the first stage to check for collisions. Depending on the application, temporal or spatial reshaping methods are used to treat detected collisions. Temporal reshaping adjusts the velocity, whereas spatial reshaping deforms the path itself. We demonstrate the effectiveness of the proposed method through examples of a space manipulator with highly nonlinear dynamics and a humanoid robot executing dynamic manipulation and locomotion at the same time.   相似文献   

3.
Dual-arm reconfigurable robot is a new type of robot. It can adapt to different tasks by changing its different end-effector modules which have standard connectors. Especially, in fast and flexible assembly, it is very important to research the collision-free planning of dual-arm reconfigurable robots. It is to find a continuous, collision-free path in an environment containing obstacles. A new approach to the real-time collision-free motion planning of dual-arm reconfigurable robots is used in the paper. This method is based on configuration space (C-Space). The method of configuration space and the concepts reachable manifold and contact manifold are successfully applied to the collision-free motion planning of dual-arm robot. The complexity of dual-arm robots’ collision-free planning will reduce to a search in a dispersed C-Space. With this algorithm, a real-time optimum path is found. And when the start point and the end point of the dual-arm robot are specified, the algorithm will successfully get the collision-free path real time. A verification of this algorithm is made in the dual-arm horizontal articulated robot SCARATES, and the simulation and experiment ascertain that the algorithm is feasible and effective.  相似文献   

4.
面向全方位双足步行跟随的路径规划   总被引:1,自引:0,他引:1  
张继文  刘莉  陈恳 《自动化学报》2016,42(2):189-201
双足步行机器人的足迹规划方法难以满足快速步行条件下的计算效率要求, 并存在步幅变化时运动失稳的风险, 2D环境下点机器人栅格规划则难于生成针对双足步行的高效路径.本文提出针对各向异性特征全方位步行机器人的一种路径规划策略, 将状态网格图方法拓展到全方位移动机器人领域, 基于三项基本假设及基元类型划分给出了系统的运动基元枚举及选择方法, 借助实时修正的增量式AD*搜索算法实现仿人机器人在动态环境下的快速路径规划, 通过合理选择启发函数及状态转移代价, 生成了平滑高效的路径, 为后续足迹生成的动力学优化提供了基础.计算机仿真证实了方法对各类环境的适应性, Robocup避障竞速挑战赛的成功表现证明了方法对于机器人样机部署的可行性及其提高步行效率的潜力.  相似文献   

5.
In this paper we address whole-body manipulation of bulky objects by a humanoid robot. We adopt a “pivoting” manipulation method that allows the humanoid to displace an object without lifting, but by the support of the ground contact. First, the small-time controllability of pivoting is demonstrated. On its basis, an algorithm for collision-free pivoting motion planning is established taking into account the naturalness of motion as nonholonomic constraints. Finally, we present a whole-body motion generation method by a humanoid robot, which is verified by experiments.  相似文献   

6.
A neural network approach to complete coverage path planning.   总被引:10,自引:0,他引:10  
Complete coverage path planning requires the robot path to cover every part of the workspace, which is an essential issue in cleaning robots and many other robotic applications such as vacuum robots, painter robots, land mine detectors, lawn mowers, automated harvesters, and window cleaners. In this paper, a novel neural network approach is proposed for complete coverage path planning with obstacle avoidance of cleaning robots in nonstationary environments. The dynamics of each neuron in the topologically organized neural network is characterized by a shunting equation derived from Hodgkin and Huxley's (1952) membrane equation. There are only local lateral connections among neurons. The robot path is autonomously generated from the dynamic activity landscape of the neural network and the previous robot location. The proposed model algorithm is computationally simple. Simulation results show that the proposed model is capable of planning collision-free complete coverage robot paths.  相似文献   

7.
This paper proposes a novel method of motion generation for redundant humanoid robot arms, which can efficiently generate continuous collision-free arm motion for the preplanned hand trajectory. The proposed method generates the whole arm motion first and then computes the actuators’ motion, which is different from IK (inverse kinematics)-based motion generation methods. Based on the geometric constraints of the preplanned trajectory and the geometric structure of humanoid robot arms, the wrist trajectory and elbow trajectory can be got first without solving inverse kinematics and forward kinematics. Meanwhile, the constraints restrict all feasible arm configurations to an elbow-circle and reduce the arm configuration space to a two-dimension space. By combining the configuration space and collision distribution of arm motion, collision-free arm configurations can be identified and be used to generate collision-free arm motion, which can avoid unnecessary forward and inverse kinematics. The experiments show that the proposed method can generate continuous and collision-free arm motion for preplanned hand trajectories.  相似文献   

8.
基于改进粒子群算法的移动机器人路径规划方法研究   总被引:1,自引:1,他引:0  
针对移动机器人传统路径规划算法效率不高、寻优能力差等问题,本文提出一种基于改进粒子群优化算法(PSO)的移动机器人路径规划方法。该方法采用神经网络训练碰撞罚函数,得到无碰撞路径,然后采用粒子群优化算法解决路径的最优问题。利用神经网络实现大量的并行和分布计算,发挥PSO简单、容易实现的优点,提高了路径规划的计算效率和可靠性。仿真结果表明,这种新路径规划方法是可行且有效的。  相似文献   

9.
基于动力学约束的机器人无碰运动规划   总被引:5,自引:0,他引:5  
李大生  刘欣 《机器人》1990,12(5):14-19
本文旨在通过分析机器人系统的动力学特性来研究机器人在其工作环境中如何避开障碍物且按照预定路径运动的轨迹规划问题.文中提出了一种综合考虑多种约束条件的线性规划算法,该算法能够连续地调整系统的内能,且给出预期的运动轨迹.该算法已在IBM-PC2/80机上实现,成功地应用于我国某核电站的一反应蒸发器中检测机器人的无碰三维运动规划.文中给出了这一规划的结果及其图形仿真.  相似文献   

10.
Detecting collisions for planning collision-free motion of the wrists of two robot arms in a common workspace is discussed in this paper. A collision-free motion can be obtained by detecting collisions along the preplanned trajectories using a sphere model for the wrist of each robot and then modifying the paths and/or trajectories of one or both robots to avoid the collision. In this paper, a collision detection algorithm is described and its role in collision avoidance is discussed. Collision detection is based on the premise that (1) the wrists of robots move monotonically on their preplanned straight line trajectories and (2) collisions never occur between the two wrists at the beginning points or end points.Research supported by the NASA-Langley Research Center under Grants #NAG-1-632 and #NAG-1-772 and the AT&T Foundation.  相似文献   

11.
《Advanced Robotics》2013,27(15):2137-2169
A walking control algorithm is generally a mixture of various controllers; it depends on the characteristics of the target system. Simply adopting one part of another researcher's algorithm does not guarantee an improvement in walking performance. However, this paper proposes an effective algorithm that can be easily adopted to other biped humanoid robots; the algorithm enhances the walking performance and stability of the robot merely by adjusting the walking-ready posture. The walking performance of biped humanoid robots is easily affected by an unsuitable walking-ready posture in terms of accuracy and repeatability. More specifically, low accuracy for the walking-ready posture may cause a large difference between an actual biped robot and its mathematical model, and the low repeatability may disturb the evaluation of the performances of balance controllers. Therefore, this paper first discusses the factors that detrimentally affect bipedal walking performance and their phenomena in the walking-ready posture. The necessary conditions for an ideal walking-ready posture are then defined based on static equilibrium and a suitable adjustment algorithm is proposed. Finally, the effectiveness of the algorithm is verified through dynamic computer simulations.  相似文献   

12.
It is generally not easy to achieve smooth path planning in an unknown environment for nonholonomic mobile robots, which are subject to various robot constraints. In this paper, a hybrid approach is proposed for smooth path planning with global convergence for differential drive nonholonomic robots. We first investigate the use of a polar polynomial curve (PPC) to produce a path changing continuously in curvature and satisfying dynamic constraints. In order to achieve path generation in real-time, a computationally effective method is proposed for collision test of the complex curve. Then, a hybrid path planning approach is presented to guide the robot to move forward along the boundary of an obstacle of arbitrary shape, by generating a proper “Instant Goal” (and a series of deliberate motions through PPC curve based path generation) and planning reactively when needed using a fuzzy controller for wall following. The choice of an Instant Goal is limited to the set of candidates that are practically reachable by the robot and that enable the robot to continue following the obstacle. The effectiveness of the proposed approach is verified by simulation experiments.  相似文献   

13.
夏泽洋  陈恳  刘莉  熊璟 《机器人》2008,30(1):1-46
自然步态规划方法是实现仿人机器人步态柔顺和能量优化的可行方法,该方法要求对人体步行及其平衡策略进行定量研究.本文分析自然步态规划方法的原理,建立了一套快捷有效的人体步态测试系统,并通过实验建立了人体步行的参数化数据库.实验结果揭示了人体步行的参数化特征及其平衡策略,对于仿人机器人的自然步态规划及控制提供了理论指导.结论特别指出,仅仅通过规划的方式实现仿人机器人的自然步态是不完备的,自然步态的实现必须同仿生控制策略相结合.同时实验结论对于仿人机器人的本体优化设计也提供了参考.  相似文献   

14.
In this paper, we study the problem of finding a collision-free path for a mobile robot which possesses manipulators. The task of the robot is to carry a polygonal object from a starting point to a destination point in a possibly culttered environment. In most of the existing research on robot path planning, a mobile robot is approximated by a fixed shape, i.e., a circle or a polygon. In our task planner, the robot is allowed to change configurations for avoiding collision. This path planner operates using two algorithms: the collision-free feasible configuration finding algorithm and the collision-free path finding algorithm. The collision-free feasible configuration finding algorithm finds all collision-free feasible configurations for the robot when the position of the carried object is given. The collision-free path finding algorithm generates some candidate paths first and then uses a graph search method to find a collision-free path from all the collision-free feasible configurations along the candidate paths. The proposed algorithms can deal with a cluttered environment and is guaranteed to find a solution if one exists.  相似文献   

15.
移动机器人的动态路径规划及控制   总被引:2,自引:0,他引:2  
金小平  何克忠 《机器人》1990,12(6):10-17
本文阐述了两类机器人的导航方法:第一类方法是,先生成整个路径,然后进行路径跟踪控制;第二类方法是所谓的势场方法,即利用人工势场直接进行运动控制.在此基础上,我们提出了用于移动机器人系统导航的动态路径规划-控制方法.系统根据环境信息对路径进行动态的生成与控制,从而与实际环境实现了闭环,增加了对系统的稳定性和对环境的适应能力.  相似文献   

16.
In this paper, we propose a novel path planning algorithm for a mobile robot in dynamic and cluttered environments with kinodynamic constraints. We compute the arrival time field as a bias which gives larger weights for shorter and safer paths toward a goal. We then implement a randomized path search guided by the arrival time field for building the path considering kinematic and dynamic (kinodynamic) constraints of an actual robot. We also consider path quality by adding heuristic constraints on the randomized path search, such as reducing unstable movements of the robot by using a heading criterion. The path will be extracted by backtracking the nodes which reach the goal area to the root of the tree generated by the randomized search, and the motion from the very first node will be sent to the robot controller. We provide a brief comparison between our algorithm and other existing algorithms. Simulation and experimental results prove that our algorithm is fast and reliable to be implemented on the real robot and is able to handle kinodynamic problems effectively.  相似文献   

17.
Roadmap-based motion planning in dynamic environments   总被引:1,自引:0,他引:1  
In this paper, a new method is presented for motion planning in dynamic environments, that is, finding a trajectory for a robot in a scene consisting of both static and dynamic, moving obstacles. We propose a practical algorithm based on a roadmap that is created for the static part of the scene. On this roadmap, an approximately time-optimal trajectory from a start to a goal configuration is computed, such that the robot does not collide with any moving obstacle. The trajectory is found by performing a two-level search for a shortest path. On the local level, trajectories on single edges of the roadmap are found using a depth-first search on an implicit grid in state-time space. On the global level, these local trajectories are coordinated using an A/sup */-search to find a global trajectory to the goal configuration. The approach is applicable to any robot type in configuration spaces with any dimension, and the motions of the dynamic obstacles are unconstrained, as long as they are known beforehand. The approach has been implemented for both free-flying and articulated robots in three-dimensional workspaces, and it has been applied to multirobot motion planning, as well. Experiments show that the method achieves interactive performance in complex environments.  相似文献   

18.
Creating collision-free trajectories for mobile robots, known as the path planning problem, is considered to be one of the basic problems in robotics. In case of multiple robotic systems, the complexity of such systems increases proportionally with the number of robots, due to the fact that all robots must act as one unit to complete one composite task, such as retaining a specific formation. The proposed path planner employs a combination of Cellular Automata (CA) and Ant Colony Optimization (ACO) techniques in order to create collision-free trajectories for every robot of a team while their formation is kept immutable. The method reacts with obstacle distribution changes and therefore can be used in dynamical or unknown environments, without the need of a priori knowledge of the space. The team is divided into subgroups and all the desired pathways are created with the combined use of a CA path planner and an ACO algorithm. In case of lack of pheromones, paths are created using the CA path planner. Compared to other methods, the proposed method can create accurate collision-free paths in real time with low complexity while the implemented system is completely autonomous. A simulation environment was created to test the effectiveness of the applied CA rules and ACO principles. Moreover, the proposed method was implemented in a system using a real world simulation environment, called Webots. The CA and ACO combined algorithm was applied to a team of multiple simulated robots without the interference of a central control. Simulation and experimental results indicate that accurate collision free paths could be created with low complexity, confirming the robustness of the method.  相似文献   

19.
Turning gait is a basic motion for humanoid robots. This paper presents a method for humanoid tuming, i.e. clock-turning. The objective of clock-turning is to change robot direction at a stationary spot. The clock-turning planning consists of four steps: ankle trajectory generation, hip trajectory generation, knee trajectory generation, and inverse kinematics calculation. Our proposed method is based on a typical humanoid structure with 12 DOFs (degrees of freedom). The final output of clock-turning planning is 12 reference trajectories, which are used to control a humanoid robot with 12 DOFs. ZMP (zero moment point) is used as stability criterion for the planning. Simulation experiments are conducted to verify the effectiveness of our proposed clock-turuing method.  相似文献   

20.
A recent development in robotics is the increase of intelligence in robots. One of the research fields is to enable robots to autonomously avoid collisions with surrounding objects. This article presents an efficient method for planning collision-free paths for an articulated robot that is surrounded by polyhedral objects. The algorithm plans a hypothetical Archimedes's spiral path from the initial position to the goal position. When a collision among the arms and obstacles is detected, the hypothetical path will be modified to avoid the collision. The algorithm applies geometric methods to determine the upper and lower bounds of the reachable area of the wrist and then determines a collision-free path point on that reachable area. Because the equations, which represent the upper and lower bounds, are simple, the algorithm can rapidly determine a collision-free path. Moreover, with minor modifications, this path planning algorithm can also be applied to other robots such as spherical, cylindrical, and Cartesian types of robots. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号