首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C. Caliot  S. Abanades  G. Flamant 《Fuel》2009,88(4):617-624
The effects of the non-gray thermal radiation on the heating of a methane/argon laminar flow at high temperature are investigated. The preheating zone of a tubular reactor is studied, where the thermal decomposition of methane does not occur. The laminar flow is simulated with the commercial Fluent code in an axisymmetric geometry. The discrete ordinates method is applied to the numerical simulation of radiative heat transfer. The non-gray gas radiative model used is the absorption distribution function (ADF) using high temperature methane radiative properties which were recently published. Several thermal entrance regions of tubular reactors are compared and the influence of methane participation in radiative heat transfer is studied. The results show that the temperature field is significantly influenced by radiation due to methane absorption. Furthermore, the average flow temperature increases when the wall temperature, the tube diameter or the methane mole fraction increases. Due to intense absorption bands of methane, it is shown that the influence of methane non-gray thermal radiation should be included in simulations of such reactors.  相似文献   

2.
The heat transfer characteristics at a horizontal evaporating water surface exposed to a laminar stream of superheated stenm, which is a radiation participating real gas, have been investigated and compared to those of a hot air flow by means of a real-time laser holographic inter ferometry. Water surface temperatures and temperature profiles within the laminar boundary layer were measured precisely under adiabatic evaporation conditions. Temperature gradients at the water surface were determined and local Nusselt numbers were estimated. Those experimental results were compared to the analytical results obtained by solving the laminar boundary equations. It can be concluded here that both temperature profiles within the laminar boundary layer and heat transfer characteristics at the evaporating water surface in superheated steam stream are quite different from those in hot air flow due to an influence of gas radiation from superheated steam.  相似文献   

3.
ABSTRACT

The heat transfer characteristics at a horizontal evaporating water surface exposed to a laminar stream of superheated stenm, which is a radiation participating real gas, have been investigated and compared to those of a hot air flow by means of a real-time laser holographic inter ferometry. Water surface temperatures and temperature profiles within the laminar boundary layer were measured precisely under adiabatic evaporation conditions. Temperature gradients at the water surface were determined and local Nusselt numbers were estimated. Those experimental results were compared to the analytical results obtained by solving the laminar boundary equations. It can be concluded here that both temperature profiles within the laminar boundary layer and heat transfer characteristics at the evaporating water surface in superheated steam stream are quite different from those in hot air flow due to an influence of gas radiation from superheated steam.  相似文献   

4.
The effect of the velocity of forced oxidizer flow on the pattern and velocity of flame spread over a fuel film was experimentally studied, and the limiting conditions of steady-state flame propagation were determined. New experimental evidence was obtained for the validity of the previously proposed model of flame propagation in a thermally thin system. It was found that, in a thermally thin system at a certain value of the gas flow velocity, laminar flame propagation is followed by spin flame propagation in a narrow range of gas flow velocities, and then by quenching. In the laminar layer-by-layer propagation regime, the flame velocity does not depend on the average velocity of the opposed gas flow. The proposed model for the laminar layerby-layer flame propagation agrees with experiment taking into account the fuel film flow under the action of the Marangoni effect due to the condensed-phase temperature gradient.  相似文献   

5.
An analysis was carried out numerically to study unsteady heat and mass transfer by free convection flow of a viscous, incompressible, electrically conducting Newtonian fluid along a vertical permeable plate under the action of transverse magnetic field taking into account thermal radiation as well as homogeneous chemical reaction of first order. The fluid considered here is an optically thin gray gas, absorbing-emitting radiation, but a non-scattering medium. The porous plate was subjected to a constant suction velocity with variable surface temperature and concentration. The dimensionless governing coupled, nonlinear boundary layer partial differential equations were solved by an efficient, accurate, extensively validated, and unconditionally stable finite difference scheme of the Crank-Nicolson type. The velocity, temperature, and concentration fields were studied for the effects of Hartmann number (M), radiation parameter (R), chemical reaction (K), and Schmidt number (Sc). The local skin friction, Nusselt number, and Sherwood number are also presented and analyzed graphically. It is found that velocity is reduced considerably with a rise in the magnetic body parameter (M), whereas the temperature and concentration are found to be markedly boosted with an increase in the magnetic body parameter (M). An increase in the conduction-radiation parameter (R) is found to escalate the local skin friction (τ), Nusselt number, and concentration, whereas an increase in the conduction-radiation parameter (R) is shown to exert the opposite effect on either velocity or temperature field. Similarly, the local skin friction and the Sherwood number are both considerably increased with an increase in the chemical reaction parameter. Possible applications of the present study include laminar magneto-aerodynamics, materials processing, and MHD propulsion thermo-fluid dynamics.  相似文献   

6.
Three types of conjugated boundary value problems that arise when heat and/or mass are transferred between contiguous phases are analyzed by means of integral equation formulations. The systems are classified according to the type of differential equation that describes the temperature or concentration field in a phase, and systematic methods of solution are illustrated for each type of conjugated system. These include parabolic-parabolic systems, illustrated by a laminar gas/laminar liquid gas absorption problem, and parabolic-elliptic systems of which heat transfer from a thick-walled tube to a laminar flow is an example. The third type, which is more frequently encountered in chemical engineering, involves the conjugation of a partial differential equation with an ordinary differential equation. The temperature distribution in the falling film reactor is examined from this point of view.  相似文献   

7.
The effect of thermal dispersion during laminar forced convection filmwise condensation within a thin porous/fluid composite system is examined numerically. The model simulates two-dimensional condensation within a very permeable and highly conductive thin porous-layer coated surface. The local volume-averaging technique is utilized to establish the energy equation and to account for the thermal dispersion effect. The Darcy-Brinkman-Forchheimer model is employed to describe the flow field in the porous layer while classical boundary layer equations are used in the pure condensate region. The numerical results, which detail the dependence of the heat transfer rate and temperature field on the governing parameters (e.g., Reynolds number, Rayleigh number, Darcy number, Prandtl number, thermal dispersion coefficient, as well as porous coating thickness and thermal conductivity ratio), are calculated using a finite difference scheme. It is found that due to the better mixing of the thermal dispersion effect, the heat transfer rate is greatly increased and the effect becomes more pronounced as the Reynolds number increases. The results of this study provide valuable fundamental predictions of enhanced film condensation that can be used in a number of practical thermal engineering applications.  相似文献   

8.
We study theoretically the unsteady gravity-driven thermal convection flow of a viscous incompressible absorbing-emitting gray gas along an inclined plane in the presence of a pressure gradient and significant thermal radiation effects. The Rosseland diffusion flux model is employed to simulate thermal radiation effects. The momentum and energy conservation equations are nondimensionalized and solved exactly using the Laplace transform technique. Expressions are derived for the frictional shearing stress at the inclined plane surface and also the critical Grashof number. The effects of time (T), Grashof number (Gr), Boltzmann-Rosseland radiation parameter (K1), and plate inclination (α) on velocity (u) and temperature (θ) distributions are studied. The flow is found to be accelerated with increasing inclination of the plane, increasing free convection effects, and for greater thermal radiation contribution but decelerated with progression of time. Temperature is found to be enhanced with progression of time and with greater thermal radiation contribution. Applications of the model arise in solar energy collector analysis and industrial materials processing.  相似文献   

9.
Available boundary layer type solutions to the combined hydrodynamic and thermal entrance region problem are known to exhibit a discontinuity in the gradients of the velocity and temperature distributions in the entrance region. A new solution is presented which alleviates this shortcoming. The new solution is based on the hydrodynamic inlet-filled region concept originally proposed by Ishizawa (1966) and later adopted by Mohanty and Das (1982) to hydrodynamically developing flow in a channel. This concept is extended to the combined entry length problem by dividing the thermal entrance length into two lengthwise regions, a thermal inlet region and a thermally filled region. In the former, the effect of heat transfer between fluid and wall is confined within the thermal boundary layer developing along the wall. At the end of the thermal inlet region, the thermal boundary layers meet at the duct axis but the temperature profile is not yet developed. In the thermally filled region, the heat effects propagate throughout the entire cross section and the temperature profile undergoes adjustment in a fully thermal region to finally attain the fully developed form. A thermal shape factor is also introduced in the thermally filled region which ensures that all thermal quantities attain their fully developed values asymptotically. The new model is used to obtain solutions to the combined entry length problem for laminar flow through a parallel plate channel under the constant wall heat flux boundary condition. The analysis gives considerably better results for the local Nusselt number and thermal entrance length than previously available.  相似文献   

10.
The thermal entrance region heat transfer problem for fully developed laminar flow in curved pipes with uniform wall temperature is approached by an alternating direction implicit method for the parabolic energy equation for a flow regime with Dean number ranging from 0 to an order of 100. This work represents an extension of the classical Graetz problem in straight tubes to curved pipes. The graphical results for temperature developments in the form of temperature profiles through the horizontal and vertical planes, isothermals and local Nusselt number variations in the thermal entrance region are presented in such a way as to illustrate clearly the interaction between the secondary flow and the developing temperature field for Prandtl numbers of 0.1, 0.7, 10 and 500. For a given Dean number, the effect of Prandtl number is to shorten the thermal entrance length (I/Gz) and the temperature field develops rather rapidly with large Prandtl number. The effect of Dean number is similar to that of Prandtl number with Dean number effect becoming much more appreciable at high Prantdl numbers than at low Prandtl number.  相似文献   

11.
Natural convective boundary layer flow and heat and mass transfer of a fluid with temperature-dependent fluid viscosity, chemical reaction and thermal radiation over a vertical stretching surface in the presence of suction is investigated by scaling transformation analysis. Fluid viscosity is assumed to vary as a linear function of temperature. The symmetry groups admitted by the corresponding boundary value problem are obtained by using a special form of Lie-group transformations viz. scaling group of transformations. An exact solution is obtained for translation symmetry and numerical solutions for scaling symmetry. Effects of temperature-dependent fluid viscosity, chemical reaction and thermal radiation on the dimensionless velocity, temperature and concentration profiles are shown graphically. Comparison with previously published work is performed and excellent agreement between the results is obtained. The conclusion is drawn that the flow field and temperature and concentration profiles are significantly influenced by these parameters.  相似文献   

12.
13.
The experimental friction factor and Nusselt number data for laminar flow through a circular duct having integral helical corrugations and fitted with a helical screw-tape insert are presented. Predictive friction factor and Nusselt number correlations are also presented. The thermohydraulic performance was evaluated. The major findings of this experimental investigation are that the helical screw-tape insert in combination with integral helical corrugations performs significantly better than the individual enhancement technique acting alone for laminar flow through a circular duct up to a certain value of the fin parameter. This research finding is useful in designing tubes carrying solar thermal mass of viscous oil in a parabolic trough solar collector used in environmentally sound and increasingly cost-effective solar thermal electric power plants. The result is also useful in designing heat exchangers used in process industries.  相似文献   

14.
This study deals with the thermal cracking of natural gas for the coproduction of hydrogen and carbon black from concentrated solar energy without CO2 emission. A laboratory-scale solar reactor (1 kW) was tested and modeled successfully. It consists of a tubular graphite receiver directly absorbing solar radiation, in which a mixture of Ar and CH4 flows. A temperature increase or a gas flow rate decrease results in chemical conversion increase. Methane conversion higher than 75% was obtained. Reaction occurred near the wall where temperature is maximal and gas velocity is minimal due to the laminar flow profile. The work focused also on the design of a medium-scale tubular solar reactor (10 kW) based on the indirect heating concept. A reactor model including gas hydrodynamics and heat and mass transfers coupled to the chemical reaction was developed in order to predict the reactor performances. Temperature and species concentration profiles and final chemical conversion were quantified. According to the results, temperature was uniform in the tubular reaction zone and the predicted chemical conversion was 65%, neglecting the catalytic effect of carbon particles.  相似文献   

15.
Thermophoresis is an important mechanism of micro-particle transport due to temperature gradients in the surrounding medium. It has numerous applications, especially in the field of aerosol technology. This study has numerically investigated the thermophoretic deposition efficiency of particles in a laminar gas flow in a concentric annulus using the critical trajectory method. The governing equations are the momentum and energy equations for the gas and the particle equations of motion. The effects of the annulus size, particle diameter, the ratio of inner to outer radius of tube and wall temperature on the deposition efficiency were studied for both developing and fully-developed flows. Simulation results suggest that thermophoretic deposition increases by increasing thermal gradient, deposition distance, and the ratio of inner to outer radius, but decreases with increasing particle size. It has been found that by taking into account the effect of developing flow at the entrance region, higher deposition efficiency was obtained, than fully developed flow.  相似文献   

16.
《Journal of aerosol science》2006,37(10):1174-1187
Flow behaviour in laminar aerosol flow tubes was investigated using a Computational Fluid Dynamics (CFD) model. Since these flow tubes are typically operated at low gas velocity, even small temperature gradients produce convection currents strong enough to interfere with laminar flow. This results in recirculation, causing the residence times of aerosol particles to be poorly defined. The situation is exacerbated when temperature inversions are present, or when the flow direction and temperature are changed simultaneously. We analyzed several characteristic flow tube configurations to define the range of experimental conditions that will ensure a laminar flow profile with minimal recirculation. For a laminar flow situation, we evaluated the extent of diffusion-controlled exchange between aerosol and the flow tube wall.  相似文献   

17.

Generation of steady-state solid aerosol jets with controllable parameters is often necessary in experimental studies and industrial processes. Most of the current approaches use a fluidized bed to produce an aerosol flow and always introduce initial turbulence into the jet. Toproduce a laminar aerosol jet, flow straighteners and long tubes are used that make the design cumbersome and inflexible. In addition, in a fluidized bed-type system, the aerosol number density and gas flow rate are inherently interdependent. In a new apparatus described in this paper, metal aerosol is produced using an electrostatic recharging of particles in a DC electric field of a parallel plate capacitor, a so-called electrostatic particulate method. The powder is aerosolized within the capacitor without using any gas flows and only a small velocity, a laminar gas jet is used to carry the aerosol away from the chamber through a small nozzle made in the top plate of the capacitor. It is shown that the aerosol number density is controlled by an electric field, independently of the gas flow rate. The usefulness and flexibility of the new technique for the aerosol combustion studies is demonstrated. Preliminary results on characterization of the produced small-scale, laminar, premixed, lifted aluminum-air flames are reported. The flame propagation velocities are measured and compared to the earlier results; overall flame dimensions and radiation profiles are determined. Individual particle flame zones are visualized in the aluminum-air aerosol flame for the first time.  相似文献   

18.
Pulsed perturbation effects on convective heat transfer in the laminar flow of a viscous fluid were studied in a co-axial cylindrical tube heat exchanger over the experimental temperature range 30 to 45°C. The fluid studied here, whose viscosity is twelve times larger than water at room temperature, is an aqueous solution of glycerol (60 wt %), and the Reynolds numbers of the steady flow are between 150 and 1000. The pulses significantly increase the thermal transfer at constant dissipated mechanical power. Indeed, enhancement of the heat transfer coefficient by more than 300% was obtained with strong pulsed perturbations. Therefore, pulses superimposed to a steady flow are a simple and efficient manner to improve thermal exchanges in viscous fluids that are usually pumped in the laminar regime. A correlation based on our experimental data on pulsatile flow is used to evaluate the Nusselt number with an average error of 10%.  相似文献   

19.
This paper presents the combined influence of heat-loss and radiation on the pyrolysis of biomass parti-cles by considering the structure of one-dimensional, laminar and steady state flame propagation in uniformly pre-mixed wood particles. The assumed flame structure consists of a broad preheat-vaporization zone where the rate of gas-phase chemical reaction is small, a thin reaction zone composed of three regions:gas, tar and char combustion where convection and the vaporization rate of the fuel particles are small, and a broad convection zone. The analy-sis is performed in the asymptotic limit, where the value of the characteristic Zeldovich number is large and the equivalence ratio is larger than unity (i.e. u 1? ≥ ). The principal attention is made on the determination of a non-linear burning velocity correlation. Consequently, the impacts of radiation, heat loss and particle size as the de-termining factors on the flame temperature and burning velocity of biomass particles are declared in this research.  相似文献   

20.
Most published correlations for the minimum fluidizing gas velocity have been derived from tests under ambient conditions and increasing discrepancy is found in their application over wider ranges of operating conditions. Up to 1000°C the Ergun equation is reliable but it requires a knowledge of the particle shape factor and bed voidage for its application. Bed voidage is found to vary with temperature for laminar gas flow conditions.

Paralleling changes in gas flow conditions with operating temperature are changes in bed-to-surface heat transfer coefficients. There is a distinct transition from the interphase gas convective to the particle convective component of heat transfer being the dominant mechanism as the operating temperature increases and Remf reduces through 12,5 at Ar ∼ 26000. This is thought to be a consequence of change in bed bubbling behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号