首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tso J  Aga DS 《Analytical chemistry》2011,83(1):269-277
The increasing demand to monitor multiple classes of analytes has been mirrored by increased analytical cost and decreased throughput. For instance, the analyses of estrogens and antibiotics by liquid chromatography with tandem mass spectrometry (LC-MS/MS) are typically performed in two separate methods because estrogen analysis requires electrospray with negative ionization, while sulfonamide and tetracycline antibiotics are analyzed under positive ionization. Therefore, we investigated the use of wrong-way-round (WWR) ionization to demonstrate that sulfonamides and tetracyclines can be analyzed at a high pH (10.4), allowing simultaneous analysis with free and conjugated estrogens. An LC-MS/MS method was developed for 28 compounds by polarity switching, based on WWR ionization brought about by the ability of ammonium ions to protonate basic compounds in the gas phase even at high pH. Mass spectral data suggest that gas-phase chemical ionization induced by ammonium ions to form adducts [M + NH(4)](+) occurred, with the subsequent dissociation to the molecular ion [M + H](+). Almost all compounds have an increased signal-to-noise (S/N) ratio of [M + H](+) for sulfonamides and tetracyclines when ionized in basic versus acidic mobile phases by direct injection (no column), indicating that detection limits were not compromised. This study demonstrates a successful application of WWR ionization for the simultaneous analysis of multiple classes of compounds in a single LC-MS/MS analysis.  相似文献   

2.
A multiple ionization mass spectrometry strategy is presented based on the analysis of human serum extracts. Chromatographic separation was interfaced inline with the atmospheric pressure ionization techniques electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in both positive (+) and negative (-) ionization modes. Furthermore, surface-based matrix-assisted laser desorption/ionization (MALDI) and desorption ionization on silicon (DIOS) mass spectrometry were also integrated with the separation through fraction collection and offline mass spectrometry. Processing of raw data using the XCMS software resulted in time-aligned ion features, which are defined as a unique m/z at a unique retention time. The ion feature lists obtained through LC-MS with ESI and APCI interfaces in both +/- ionization modes were compared, and unique ion tables were generated. Nonredundant, unique ion features, were defined as mass numbers for which no mass numbers corresponding to [M + H](+), [M - H](-), or [M + Na](+) were observed in the other ionization methods at the same retention time. Analysis of the extracted serum using ESI for both (+) and (-) ions resulted in >90% additional unique ions being detected in the (-) ESI mode. Complementing the ESI analysis with APCI resulted in an additional approximately 20% increase in unique ions. Finally, ESI/APCI ionization was combined with fraction collection and offline-MALDI and DIOS mass spectrometry. The parts of the total ion current chromatograms in the LC-MS acquired data corresponding to collected fractions were summed, and m/z lists were compiled and compared to the m/z lists obtained from the DIOS/MALDI spectra. It was observed that, for each fraction, DIOS accounted for approximately 50% of the unique ions detected. These results suggest that true global metabolomics will require multiple ionization technologies to address the inherent metabolite diversity and therefore the complexity in and of metabolomics studies.  相似文献   

3.
An LC-MS based method for the profiling and characterization of ceramide species in the upper layer of human skin is described. Ceramide samples, collected by tape stripping of human skin, were analyzed by reversed-phase liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry operated in both positive and negative electrospray ionization mode. All known classes of ceramides could be measured in a repeatable manner. Furthermore, the data set showed several undiscovered ceramides, including a class with four hydroxyl functionalities in its sphingoid base. High-resolution MS/MS fragmentation spectra revealed that each identified ceramide species is composed of several skeletal isomers due to variation in carbon length of the respective sphingoid bases and fatty acyl building blocks. The resulting variety in skeletal isomers has not been previously demonstrated. It is estimated that over 1000 unique ceramide structures could be elucidated in human stratum corneum. Ceramide species with an even and odd number of carbon atoms in both chains were detected in all ceramide classes. Acid hydrolysis of the ceramides, followed by LC-MS analysis of the end-products, confirmed the observed distribution of both sphingoid bases and fatty acyl groups in skin ceramides. The study resulted in an accurate mass retention time library for targeted profiling of skin ceramides. It is furthermore demonstrated that targeted data processing results in an improved repeatability versus untargeted data processing (72.92% versus 62.12% of species display an RSD < 15%).  相似文献   

4.
The complexity of peptide mixtures that are analyzed in proteomics necessitates fractionation by multidimensional separation approaches prior to mass spectrometric analysis. In this work, we introduce and evaluate hydrophilic interaction liquid chromatography (HILIC) based strategies for the separation of complex peptide mixtures. The two zwitterionic HILIC materials (ZIC-HILIC and ZIC-cHILIC) chosen for this work differ in the spatial orientation of the positive and negative charged groups. Online experiments revealed a pH-independent resolving power for the ZIC-cHILIC resin while ZIC-HILIC showed a decrease in resolving power at an acidic pH. Subsequently, we extensively evaluated the performances of ZIC-HILIC and ZIC-cHILIC as first dimension in an off-line two-dimensional liquid chromatography (2D-LC) strategy in combination with reversed phase (RP), with respect to peptide separation efficiency and how the retention time correlates with a number of peptide physicochemical properties. Both resins allowed the identification of more than 20,000 unique peptides corresponding to over 3500 proteins in each experimental condition from a remarkably low (1.5 μg) amount of starting material of HeLa lysate digestion. The resulting data allows the drawing of a comprehensive picture regarding ZIC- and ZIC-cHILIC peptide separation characteristics. Furthermore, the extent of protein identifications observed from such a level of material demonstrates that HILIC can rival or surpass traditional multidimensional strategies employed in proteomics.  相似文献   

5.
Qin F  Zhao YY  Sawyer MB  Li XF 《Analytical chemistry》2008,80(9):3404-3411
We report a hydrophilic interaction liquid chromatography (HILIC) separation with tandem mass spectrometry (MS) detection method for analysis of seven urinary estrogen conjugates. HILIC separation employing a mobile phase with high organic solvent content resulted in enhanced electrospray ionization efficiency and MS sensitivity compared with reversed-phase (RP) LC-MS methods. Solid-phase extraction (SPE) was used to further improve the limit of detection and to eliminate interferences for the analysis of urine samples. No hydrolysis or derivatization was required in the sample pretreatment. This SPE/HILIC-MS/MS method provided limits of quantification (LOQs at S/N = 10) for the seven conjugates ranging from 2 to 1000 pg/mL with only 1 mL of urine sample, representing an improvement of 1 order of magnitude over the RPLC tandem MS methods previously reported. This method provided a linear dynamic range of 3 orders of magnitude, recovery of 92-109%, intraday accuracy of 84-109%, intraday precision of 1-14%, interday accuracy of 80-111%, and interday precision of 1-22%. We have successfully applied this technique to determine the seven estrogen conjugates in urine samples of a pregnant woman and found unique concentration changes of six estrogen conjugates at different stages of pregnancy while the concentration of estriol-3-glucuronide (E3-3G) remained constant. We further studied the profiles of individual estrogen conjugates in breast cancer patients before and after treatment and found patient-dependent effects of aromatase inhibitor treatment on estrogen phase-II metabolism, which have not been reported previously. This study demonstrates the potential clinical application of the HILIC-MS/MS technique for sensitive monitoring of the changes of urinary estrogen conjugates in a clinical setting.  相似文献   

6.
A comprehensive analytical method based on reversed-phase liquid chromatography and mass spectrometry using both atmospheric pressure chemical ionization and electrospray ionization has been developed for the simultaneous determination of anionic and nonionic surfactants, their polar degradation products, and endocrine-disrupting compounds (EDCs) in sewage sludge. Extraction of target compounds, with recovery rates from 86% to nearly 100% for polyethoxylates and from 84 to 94% for polar degradation products, was achieved applying ultrasonic solvent extraction with a mixture of methanol/ dichloromethane (7:3, v/v). Cleanup of sample extracts was performed on octadecyl solid-phase extraction cartridges. Determination of less polar compounds: alcohol ethoxylates (AEOs), nonylphenol ethoxylates (NPEOs), coconut diethanol amides, poly(ethylene glycol)s, and phthalate esters was accomplished by reversed-phase LC-APCI-MS in positive ionization mode, while more polar compounds: nonylphenolcarboxylates, nonylphenol (NP), octylphenol, and bisphenol Awere analyzed by ion-pair LC-ESI-MS under negative ionization conditions. This protocol was successfully applied to the trace determination of anionic and nonionic surfactants, polar degradation products, and EDCs in sewage sludge collected from different sewage treatment plants. The analysis revealed the presence of NP at high concentration levels ranging from 25 to 600 mg/kg. Polyethoxylates (AEOs and NPEOs) were also found in all samples at parts-per-million levels (10-190 mg/kg AEOs and 2-135 mg/kg NPEOs, respectively).  相似文献   

7.
The chiral separations of drug substances and underivatized amino acids were demonstrated in this study through the use of hydrophilic interaction chromatography (HILIC). The polar character of the model compounds presented challenges for their analysis by traditional modes of chromatography, but through the employment of multimodal chromatography utilizing the HILIC mechanism and cyclodextrin- or teicoplanin-derivatized stationary phases, effective resolution was achieved. The analytes lacked sufficient ultraviolet chromophores, requiring their determination by evaporative light scattering detection. HILIC was demonstrated to represent a novel technique for the facilitation of chiral chromatography by providing an environment of solubility and retention that could not be achieved through the use of the traditional methods of reversed-phase, normal-phase, or polar organic mode.  相似文献   

8.
The goal of this study was the application of a novel, fully automatic column-switching approach in a metabonomics study combining the orthogonal selectivities of hydrophilic interaction chromatography (HILIC) and reversed-phase chromatography. The temporal, pharmacodynamic effects of the ginsenoside Rg3 on the metabonome in urine of healthy and liver-tumor-bearing rats have been investigated. Within a total analysis time of 52 min we detected 5686 polar, and on the second column an additional 1808 apolar, urinary metabolite ions. The administration of a single, high dose of Rg3 in a beta-cyclodextrin-based formulation led to a considerable change of the metabolic pattern in cancer rats during 3 days studied. Seventeen biomarker candidates including three apolar metabolites, which were not retained on the HILIC column, were detected. Overall, the results suggest that the developed liquid chromatography-mass spectrometry strategy is a promising tool in metabonomics studies for global analysis of highly complex biosamples. It may not only increase the number of discovered biomarkers but consequently improve the comprehensive information on metabolic changes in a fully automatic manner.  相似文献   

9.
Microfluidic chip-based hydrophilic interaction chromatography (HILIC) is a useful separation system for liquid chromatography-mass spectrometry (LC-MS) in compositional profiling of heparan sulfate (HS) oligosaccharides; however, ions observed using HILIC LC-MS are low in charge. Tandem MS of HS oligosaccharide ions with low charge results in undesirable losses of SO(3) from precursor ions during collision induced dissociation. One solution is to add metal cations to stabilize sulfate groups. Another is to add a nonvolatile, polar compound such as sulfolane, a molecule known to supercharge proteins, to produce a similar effect for oligosaccharides. We demonstrate use of a novel pulsed makeup flow (MUF) HPLC-chip. The chip enables controlled application of additives during specified chromatographic time windows and thus minimizes the extent to which nonvolatile additives build up in the ion source. The pulsed MUF system was applied to LC-MS/MS of HS oligosaccharides. Metal cations and sulfolane were tested as additives. The most promising results were obtained for sulfolane, for which supercharging of the oligosaccharide ions increased their signal strengths relative to controls. Tandem MS of these supercharged precursor ions showed decreased abundances of product ions from sulfate losses yet more abundant product ions from backbone cleavages.  相似文献   

10.
Desorption electrospray ionization (DESI) was demonstrated as a means to couple thin-layer chromatography (TLC) with mass spectrometry. The experimental setup and its optimization are described. Development lanes were scanned by moving the TLC plate under computer control while directing the stationary DESI emitter charged droplet plume at the TLC plate surface. Mass spectral data were recorded in either selected reaction monitoring mode or in full scan ion trap mode using a hybrid triple quadrupole linear ion trap mass spectrometer. Fundamentals and practical applications of the technique were demonstrated in positive ion mode using selected reaction monitoring detection of rhodamine dyes separated on hydrophobic reversed-phase C8 plates and reversed-phase C2 plates, in negative ion full scan mode using a selection of FD&C dyes separated on a wettable reversed-phase C18 plate, and in positive ion full scan mode using a mixture of aspirin, acetaminophen, and caffeine from an over-the-counter pain medication separated on a normal-phase silica gel plate.  相似文献   

11.
The effect of liquid chromatographic separation on matrix-related signal suppression in electrospray ionization mass spectrometry (LC-ESI-MS) was investigated. A method incorporating on-line two-dimensional liquid chromatography mass spectrometry (LC/LC-MS) was developed to compensate for matrix effects and signal suppression in qualitative and quantitative analysis. The LC/LC-MS(MS) approach was successfully applied for single-component and multicomponent analysis in a variety of complex matrixes. It was demonstrated that matrix-related signal suppression could be induced solely by (i) column overload, (ii) matrix component-analyte coelution, or a combination of each. Application of on-line orthogonal LC/LC separations can be effective in reducing both causes of matrix-related signal suppression effects i.e., column overload and matrix-analyte coelution for a variety of LCn/MSn applications.  相似文献   

12.
Neutral and acidic (sialylated) 2-aminopyridine-derivatized (PA) oligosaccharides were analyzed by using reversed-phase high-performance liquid chromatography/ion trap mass spectrometry (RP-HPLC/IT MS) with a sonic spray ionization (SSI) source. Under the RP-HPLC separation using a buffer of 1 mM ammonium acetate (pH4.3) at a flow rate of 0.2 mL/min, both PA-oligosaccharides in the negative-ion mode showed a comparable degree of ionization efficiency, differing from that of the positive-ion mode, which exhibits a wide gap between their ionization efficiencies. In addition, the ion intensities of both PA-oligosaccharides were higher in the negative-ion mode than in the positive-ion mode. These results strongly suggest that the negative-ion mode of SSI-MS is suitable for simultaneous analysis of neutral and acidic (sialylated) oligosaccharides in RP-HPLC/MS. In the present study, RP-HPLC/SSI-IT MS in the negative-ion mode was used in the analysis of PA-oligosaccharides from human serum and its usefulness was investigated. As a result, 32 neutral and sialylated PA-oligosaccharides from human serum were identified with differentiating isomeric oligosaccharides and relatively quantified by a single HPLC/MS run. This method is useful for simple and rapid analysis of the overall distribution of neutral and sialylated oligosaccharides in a complex sample such as serum.  相似文献   

13.
In this study we introduce the implementation of rapid temperature pulses for selectivity tuning in capillary liquid chromatography. Short temperature pulses improved resolution in discrete sections of chromatograms, demonstrated for ion-exchange chromatography (IC) and hydrophilic interaction chromatography (HILIC) modes. Using a resistively heated column module capable of accurate and rapid temperature changes, this concept is first illustrated with separations of small anions by IC using a packed capillary column as well as a series of nucleobases and nucleosides by HILIC using a silica monolithic column with zwitterionic functionality (ZIC-HILIC). Both positive (increasing temperature) and negative temperature pulses are demonstrated to produce significant changes in selectivity and are useful approaches for improving resolution between coeluted compounds. The approach was shown to be reproducible over a large number of replicates. Finally, the use of temperature gradients as well as other complex temperature profiles was also examined for both IC and HILIC separations.  相似文献   

14.
Wang NH  Lee WL  Her GR 《Analytical chemistry》2011,83(16):6163-6168
A strategy based on postcolumn electrophoretic mobility control (EMC) was developed to alleviate the adverse effect of trifluoroacetic acid (TFA) on the liquid chromatography-mass spectrometry (LC-MS) analysis of peptides. The device created to achieve this goal consisted of a poly(dimethylsiloxane) (PDMS)-based junction reservoir, a short connecting capillary, and an electrospray ionization (ESI) sprayer connected to the outlet of the high-performance liquid chromatography (HPLC) column. By apply different voltages to the junction reservoir and the ESI emitter, an electric field was created across the connecting capillary. Due to the electric field, positively charged peptides migrated toward the ESI sprayer, whereas TFA anions remained in the junction reservoir and were removed from the ionization process. Because TFA did not enter the ESI source, ion suppression from TFA was alleviated. Operation of the postcolumn device was optimized using a peptide standard mixture. Under optimized conditions, signals for the peptides were enhanced 9-35-fold without a compromise in separation efficiency. The optimized conditions were also applied to the LC-MS analysis of a tryptic digest of bovine serum albumin.  相似文献   

15.
Liquid chromatography coupled to mass spectrometry (LC-MS) is a major platform in metabolic profiling but has not yet been comprehensively assessed as to its repeatability and reproducibility across multiple spectrometers and laboratories. Here we report results of a large interlaboratory reproducibility study of ultra performance (UP) LC-MS of human urine. A total of 14 stable isotope labeled standard compounds were spiked into a pooled human urine sample, which was subject to a 2- to 16-fold dilution series and run by UPLC coupled to time-of-flight MS at three different laboratories all using the same platform. In each lab, identical samples were run in two phases, separated by at least 1 week, to assess between-day reproducibility. Overall, platform reproducibility was good with median mass accuracies below 12 ppm, median retention time drifts of less than 0.73 s and coefficients of variation of intensity of less than 18% across laboratories and ionization modes. We found that the intensity response was highly linear within each run, with a median R(2) of 0.95 and 0.93 in positive and negative ionization modes. Between-day reproducibility was also high with a mean R(2) of 0.93 for a linear relationship between the intensities of ions recorded in the two phases across the laboratories and modes. Most importantly, between-lab reproducibility was excellent with median R(2) values of 0.96 and 0.98 for positive and negative ionization modes, respectively, across all pairs of laboratories. Interestingly, the three laboratories observed different amounts of adduct formation, but this did not appear to be related to reproducibility observed in each laboratory. These studies show that UPLC-MS is fit for the purpose of targeted urinary metabolite analysis but that care must be taken to optimize laboratory systems for quantitative detection due to variable adduct formation over many compound classes.  相似文献   

16.
An evaluation of over 75 pesticides by high-performance liquid chromatography/mass spectrometry (HPLC/MS) clearly shows that different classes of pesticides are more sensitive using either atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI). For example, neutral and basic pesticides (phenylureas, triazines) are more sensitive using APCI (especially positive ion). While cationic and anionic herbicides (bipyridylium ions, sulfonic acids) are more sensitive using ESI (especially negative ion). These data are expressed graphically in a figure called an ionization-continuum diagram, which shows that protonation in the gas phase (proton affinity) and polarity in solution, expressed as proton addition or subtraction (pKa), is useful in selecting APCI or ESI. Furthermore, sodium adduct formation commonly occurs using positive ion ESI but not using positive ion APCI, which reflects the different mechanisms of ionization and strengthens the usefulness of the ionization-continuum diagram. The data also show that the concept of "wrong-way around" ESI (the sensitivity of acidic pesticides in an acidic mobile phase) is a useful modification of simple PKa theory for mobile-phase selection. Finally, this finding is used to enhance the chromatographic separation of oxanilic and sulfonic acid herbicides while maintaining good sensitivity in LC/MS using ESI negative.  相似文献   

17.
A method has been developed for the trace analysis of 27 compounds from a diverse group of pharmaceuticals, steroids, pesticides, and personal care products. The method employs solid-phase extraction (SPE) and liquid chromatography/tandem mass spectrometry (LC/MS/MS), using electrospray ionization (ESI) in both positive and negative modes and atmospheric pressure chemical ionization in positive mode. Unlike many previous methods, a single SPE procedure using 1 L of water coupled to a simple LC method is used for all ionization modes. Instrument detection limits for most compounds were below 1.0 pg on column with reporting limits of 1.0 ng/L in water. Recoveries for most compounds in deionized water were greater than 80%. Sulfuric acid was found to be the preferred sample preservative, and structures of all MS/MS product ions are proposed. Matrix effects from waters with a high content of treated municipal effluent were observed in both ESI modes and are discussed in the paper.  相似文献   

18.
A liquid chromatography-mass spectrometry (LC-MS) method was used for separation of lipid classes as well as both qualitative and semiquantitative detection of individual lipids in biological samples. Data were acquired using high-resolution full-scan MS and high-energy collisional dissociation (HCD) all ion fragmentation. The method was evaluated for efficient separation and detection in both positive and negative ionization mode using standards spanning six lipid classes. Platform linearity and robustness, related to the mitochondrial lipid cardiolipin (CL), were assessed using extracted ion chromatograms with mass tolerance windows of 5 ppm or less from full scan exact mass measurements. The platform CL limit of detection was determined to be 5 pmol (0.9 μM) on the column, with mass accuracy <1.5 ppm, retention time coefficients of variation (CV) < 0.5%, and area CV < 13%. This mass accuracy was critical to the identification of unknown CL species in mitochondria samples, through the elimination of false positives. In addition to detection and relative quantitation of CL species in mitochondria, CL structures were characterized through the use of alternating HCD scans at different energies to produce diagnostic fragmentations on all ions in the analysis. The developed lipid profiling method was applied to mitochondrial samples from an animal study related to the linkages between diet, mitochondrial function, and disease. The analysis identified 28 unique CL species and two monolysocardiolipin species that are often associated with mitochondrial stress and dysfunction.  相似文献   

19.
There is a growing need both clinically and experimentally to improve the characterization of blood lipids. A liquid chromatography-mass spectrometry (LC-MS) method, developed for the qualitative and semiquantitative detection of lipids in biological samples and previously validated in mitochondrial samples, was now evaluated for the profiling of serum lipids. Data were acquired using high-resolution, full scan MS and high-energy, collisional dissociation (HCD), all ion fragmentation. The method was designed for efficient separation and detection in both positive and negative ionization mode and evaluated using standards spanning seven lipid classes. Platform performance, related to the identification and characterization of serum triglycerides (TGs), was assessed using extracted ion chromatograms with mass tolerance windows of 5 ppm or less from full scan exact mass measurements determined using SIEVE nondifferential LC-MS analysis software. The platform showed retention time coefficients of variation (CV) of <0.3%, mass accuracy values of <2 ppm error, and peak area CV of <13%, with the majority of that error coming from sample preparation and extraction rather than the LC-MS analysis, and linearity was shown to be over 4 orders of magnitude (r(2) = 0.999) for the standard TG (15:0)(3) spiked into serum. Instrument mass accuracy and precision were critical to the identification of unknown TG species, in part because these parameters enabled us to reduce false positives. In addition to detection and relative quantitation of TGs in serum, TG structures were characterized through the use of alternating HCD scans at different energies to produce diagnostic fragmentations on all ions in the analysis. The lipidomics method was applied to serum samples from 192 rats maintained on diets differing in macronutrient composition. The analysis identified 86 TG species with 81 unique masses that varied over 3.5 orders of magnitude and showed diet-dependency, consistent with TGs linking diet and disease risk.  相似文献   

20.
A reversed-phase high-performance liquid chromatography-mass spectrometry (LC-MS) method is described for the separation and simultaneous analysis of porphyrins related to disorders of heme biosynthesis (uro-, heptacarboxylic, hexacarboxylic, pentacarboxylic, and coproporphyrins). The method involves initial porphyrin esterification and extraction from urine. Detection and quantification is performed from the extracts by separation with a Hypersil BDS column and on-line detection by MS through coupling with an atmospheric pressure chemical ionization interface. The porphyrin esters are detected as protonated molecules [M + H]+. Their mass spectra also exhibit an [M + Na]+ fragment of lower intensity. The analytical performance of this method is compared with those of LC with UV and fluorescence detection. LC-MS used in selective [M + H]+ ion monitoring provides the lowest detection and quantitation limits. In scan mode, this LC-MS method affords, without further isolation or concentration steps, the measurement of mass spectra of unknown compounds present in the urine of patients with altered porphyrin excretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号