首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cl2/Ar based inductively coupled plasma (ICP) etching of GaN is investigated using photoresist mask in a consequential restricted domain of pressure < 1.2 Pa and radio frequency (RF) sample power < 100 W, for selective mesa etching. The etch characteristics and root-mean-square (rms) surface roughness are studied as a function of process parameters viz. process pressure, Cl2 percentage in total flow rate ratio, and RF sample power at a constant ICP power, to achieve moderate GaN etch rate with anisotropic profiles and smooth surface morphology. The etch rate and resultant surface roughness of etched surface increased with pressure mainly due to dominant reactant limited etch regime. The etch rate and surface roughness show strong dependence on RF sample power with the former increasing and the later decreasing with the applied RF sample power up to 80 W. The process etch yield variation with applied RF sample power is also reported. The studied etch parameters result in highly anisotropic mesa structures with Ga rich etched surface.  相似文献   

2.
In this study, we carried out an investigation in the etching characteristics of TiN thin films in a C12/Ar adaptive coupled plasma. The maximum etch rate of the TiN thin films was 768 nm/min at a gas mixing ratio of C12 (75%)/Ar (25%). At the same time, the etch rate was measured as functions of the various etching parameters. The X-ray photoelectron spectroscopy analysis showed the efficient destruction of the oxide bonds by the ion bombardment as well as the accumulation of low volatile reaction products on the etched surface. Field emission Auger electron spectroscopy analysis was used to examine the efficiency of the ion-stimulated desorption of the reaction products.  相似文献   

3.
Do Young Lee 《Thin solid films》2009,517(14):4047-4051
Inductively coupled plasma reactive ion etching of indium zinc oxide (IZO) thin films masked with a photoresist was performed using a Cl2/Ar gas. The etch rate of the IZO thin films increased as Cl2 gas was added to Ar gas, reaching a maximum at 60% Cl2 and decreasing thereafter. The degree of anisotropy in the etch profile improved with increasing coil rf power and dc-bias voltage. Changes in pressure had little effect on the etch profile. X-ray photoelectron spectroscopy confirmed the formation of InCl3 and ZnCl2 on the etched surface. The surface morphology of the films etched at high Cl2 concentrations was smoother than that of the films etched at low Cl2 concentrations. These results suggest that the dry etching of IZO thin films in a Cl2/Ar gas occurs according to a reactive ion etching mechanism involving ion sputtering and a surface reaction.  相似文献   

4.
In this work, we investigated the etching characteristics of TiO2 thin films and the selectivity of TiO2 to SiO2 in a BCl3/Ar inductively coupled plasma (ICP) system. The maximum etch rate of 84.68 nm/min was obtained for TiO2 thin films at a gas mixture ratio of BCl3/Ar (25:75%). In addition, etch rates were measured as a function of etching parameters, such as the RF power, DC-bias voltage and process pressure. Using the X-ray photoelectron spectroscopy analysis the accumulation of chemical reaction on the etched surface was investigated. Based on these data, the ion-assisted physical sputtering was proposed as the main etch mechanism for the BCl3-containing plasmas.  相似文献   

5.
Inductively coupled plasma reactive ion etching of titanium thin films patterned with a photoresist using Cl2/Ar gas was examined. The etch rates of the titanium thin films increased with increasing the Cl2 concentration but the etch profiles varied. In addition, the effects of the coil rf power, dc-bias voltage and gas pressure on the etch rate and etch profile were investigated. The etch rate increased with increasing coil rf power, dc-bias voltage and gas pressure. The degree of anisotropy in the etched titanium films improved with increasing coil rf power and dc-bias voltage and decreasing gas pressure. X-ray photoelectron spectroscopy revealed the formation of titanium compounds during etching, indicating that Ti films etching proceeds by a reactive ion etching mechanism.  相似文献   

6.
D.Y. Kim 《Thin solid films》2008,516(11):3512-3516
Under certain conditions during ITO etching using CH4/H2/Ar inductively coupled plasmas, the etch rate selectivity of ITO to photoresist (PR) was infinitely high because the ITO films continued to be etched, but a net deposition of the α-C:H layer occurred on the top of the PR. Analyses of plasmas and etched ITO surfaces suggested that the continued consumption of the carbon and hydrogen in the deposited α-C:H layer by their chemical reaction with In and Sn atoms in the ITO resulting in the generation of volatile metal-organic etch products and by the ion-enhanced removal of the α-C:H layer presumably play important roles in determining the ITO etch rate and selectivity.  相似文献   

7.
In this study, we monitored the HfAlO3 etch rate and selectivity to SiO2 as a function of the etch parameters (gas mixing ratio, RF power, DC-bias voltage, and process pressure). A maximum etch rate of 52.6 nm/min was achieved in the 30% BCl3/(BCl3 + Ar) plasma. The etch selectivity of HfAlO3 to SiO2 reached 1.4. As the RF power and the DC-bias voltage increased, the etch rate of the HfAlO3 thin film increased. As the process pressure decreased, the etch rate of the HfAlO3 thin films increased. The chemical state of the etched surfaces was investigated by X-ray Photoelectron Spectroscopy (XPS). According to the results, the etching of HfAlO3 thin films follows the ion-assisted chemical etching mechanism.  相似文献   

8.
In this study, we investigated to the etch characteristics of indium zinc oxide (IZO) thin films in a CF4/Ar plasma, namely, etch rate and selectivity toward SiO2. A maximum etch rate of 76.6 nm/min was obtained for IZO thin films at a gas mixture ratio of CF4/Ar (25:75%). In addition, etch rates were measured as a function of etching parameters, including adaptively coupled plasma chamber pressure. X-ray photoelectron spectroscopy analysis showed efficient destruction of the oxide bonds by ion bombardment, as well as accumulation of low volatile reaction products on the surface of the etched IZO thin films. Field emission Auger electron spectroscopy analysis was used to examine the efficiency of ion-stimulated desorption of the reaction products.  相似文献   

9.
M.H. Shin  S.H. Jung  N.-E. Lee 《Thin solid films》2007,515(12):4950-4954
Effect of doping elements on the etching characteristics of doped-ZnO (Ag, Li, and Al) thin films, etched with a positive photoresist (PR) mask, and an etch process window for infinite etch selectivity were investigated by varying the CH4 flow ratio and self-bias voltage, Vdc, in inductively coupled CH4/H2/Ar plasmas. Increased doping of ZnO films decreased the etch rates significantly presumably due to lower volatility of reaction by-products of doped Li, Ag, and Al in CH4/H2/Ar plasmas. The etch rate of AZO (Al-doped ZnO) was most significantly decreased as the doping concentration is increased from 4 to 10 wt%. It was found that process window for infinite etch selectivity of the doped ZnO to the PR is closely related to a balance between deposition and removal processes of a-C:H (amorphous hydrogenated carbon) layer on the doped-ZnO surface. Measurements of optical emission of the radical species in the plasma and surface binding states by optical emission spectroscopy (OES) and X-ray photoelectron spectroscopy (XPS), respectively, implied that the chemical reaction of CH radicals with Zn atoms in doped-ZnO play an important role in determining the doped-ZnO etch rate together with an ion-enhanced removal mechanism of a-C:H layer as well as Zn(CHx)y etch by-products.  相似文献   

10.
An inductively coupled plasma reactive ion etching of IrMn magnetic thin films patterned with Ti hard mask was studied in a CH3OH/Ar gas mix. As the CH3OH concentration increased, the etch rates of IrMn thin films and Ti hard mask decreased, while the etch profiles improved with high degree of anisotropy. The effects of coil rf power, dc-bias voltage to substrate and gas pressure on the etch characteristics were investigated. The etch rate increased and the etch profile improved with increasing coil rf power, dc-bias voltage and decreasing gas pressure. X-ray photoelectron spectroscopy revealed that the chemical reaction between IrMn films and CH3OH gas occurred, leading to the clean and good etch profile with high degree of anisotropy of 90°.  相似文献   

11.
In this research, we investigated the TaN etch rate and selectivity with under layer (HfO2) and mask material (SiO2) in inductively coupled CH4/Ar plasma. As the CH4 content increased from 0% to 80% in CH4/Ar plasma, the TaN etch rate was increased from 11.9 to 22.8 nm/min. From optical emission spectroscopy (OES), the intensities for CH [431 nm] and H [434 nm] were increased with the increasing CH4 content from 0% to 100% in CH4/Ar plasma. The results of x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) showed no accumulation of etch by-products from the etched surface of TaN thin film. As a result of OES, AES and XPS analysis, we observed the etch by-products from the surfaces, such as Ta-N-CH and N-CH bonds. Based on the experimental results, the TaN etch was dominated by the chemical etching with the assistance of Ar sputtering in reactive ion etching mechanism.  相似文献   

12.
Gwan-Ha Kim 《Thin solid films》2007,515(12):4955-4959
Magnesium oxide thin film has been widely used as a buffer layer and substrate for growing various thin film materials because of very low Gibbs free energy, low dielectric constant and low refractive index. The investigations of the MgO etching characteristics in BCl3/Ar plasma were carried out using the inductively coupled plasma system. It was found that the increasing BCl3 in the mixing ratio of BCl3/Ar plasma causes monotonic MgO etch rate. The results showed in the BCl3-rich plasma that the etching process is dominantly supplied by the chemical pathway through the ion-assisted chemical reaction.  相似文献   

13.
Etch characteristics of MgO thin films were investigated using an inductively coupled plasma reactive ion etcher in a HBr/Ar plasma. As the concentration of HBr gas increased, the etch rate of MgO thin films gradually decreased, but the etch rate of Ti hard mask showed initial decrease and then increased with increasing HBr concentration. The etch profile of MgO films was improved with increasing HBr concentration and a high degree of anisotropy in etch profile was achieved at 30% HBr/Ar gas. Based on the etch characteristics and surface analysis by X-ray photoelectron spectroscopy, it can be concluded that the etch mechanism of MgO thin films in a HBr/Ar gas does not follow the reactive ion etch mechanism but the sputter etching mechanism with the assistance of chemical reactions on the film surfaces.  相似文献   

14.
Jong-Chang Woo 《Thin solid films》2010,518(10):2905-2909
The etching characteristics of zinc oxide (ZnO) including the etch rate and the selectivity of ZnO in a BCl3/Ar plasma were investigated. It was found that the ZnO etch rate showed a non-monotonic behavior with an increasing BCl3 fraction in the BCl3/Ar plasma, along with the RF power, and gas pressure. At a BCl3 (80%)/Ar (20%) gas mixture, the maximum ZnO etch rate of 50.3 nm/min and the maximum etch selectivity of 0.75 for ZnO/Si were obtained. Plasma diagnostics done with a quadrupole mass spectrometer delivered the data on the ionic species composition in plasma. Due to the relatively high volatility of the by-products formed during the etching by the BCl3/Ar plasma, ion bombardment in addition to physical sputtering was required to obtain the high ZnO etch rates. The chemical state of the etched surfaces was investigated with X-ray Photoelectron Spectroscopy (XPS). Inferred from this data, it was suggested that the ZnO etch mechanism was due to ion enhanced chemical etching.  相似文献   

15.
We have investigated the selective etching of 50 μm diameter via-holes for etch depth >200 μm using 30 μm thick photo resist mask in Inductively Coupled Plasma system with Cl2/BCl3 chemistry. Resultant etch rate/etch profiles are studied as a function of ICP process parameters and photo resist mask sidewall profile. Etch yield and aspect ratio variation with process pressure and substrate bias is also investigated at constant ICP power. The etch yield of ICP process increased with pressure due to reactant limited etch mechanism and reached a maximum of ∼19 for 200 μm depth at 50 mTorr pressure, 950 W coil power, 80 W substrate bias with an etch rate ∼4.9 μm/min. Final aspect ratio of etched holes is increased with pressure from 1.02 at 20 mTorr to 1.38 at 40 mTorr respectively for fixed etch time and then decreased to 1.24 at 50 mTorr pressure. The resultant final etch profile and undercut is found to have a strong dependence on the initial slope of photo resist mask sidewall angle and its selectivity in the pressure range of 20-50mTorr.  相似文献   

16.
The effect of high-frequency (HF) frequency on etching characteristics of SiCOH films in a CHF3 dual-frequency capacitively couple plasma driven by 13.56 MHz/2 MHz, 27.12 MHz/2 MHz or 60 MHz/2 MHz sources was investigated in this work. The surface structure of the films after etching and the CHF3 discharge plasma were characterized. The increase of HF frequency reduced the critical HF power for the etching, suppressed the C:F deposition at the surface of etched films, and improved the etching of SiCOH films. The improvement of etching was attributed to the increase of ions energy and F concentration at high HF frequency.  相似文献   

17.
In this study, we compared the line edge roughnesses (LER) and profile angles of chemical vapor deposited (CVD) amorphous carbon (a-C) patterns etched in an inductively coupled plasma (ICP) etcher produced by varying process parameters such as the N2 gas flow ratio, Q (N2), and dc self-bias voltage (Vdc) in O2/N2/Ar and H2/N2/Ar plasmas. The tendencies of the LER and profile angle values of the etched CVD a-C pattern were similar in both plasmas. The LER was smaller in the O2/N2/Ar than in the H2/N2/Ar plasmas, and the profile angle was larger in the O2/N2/Ar than in the H2/N2/Ar plasmas under the same processes conditions. The use of O2/N2/Ar plasma was more advantageous than the H2/N2/Ar plasma for controlling LER and profile angle.  相似文献   

18.
Etch characteristics of CoFeB magnetic thin films patterned with TiN hard masks were investigated using inductively coupled plasma reactive ion etching in H2O/Ar and H2O/CH4 gas mixes. As the H2O concentration in the H2O/Ar gas increased, the etch rates of CoFeB and TiN films decreased simultaneously, while the etch selectivity increased and etch profiles improved slightly without any redeposition. The addition of CH4 to the H2O gas resulted in an increase in etch selectivity and a higher degree of anisotropy in the etch profile. X-ray photoelectron spectroscopy was performed to understand the etch mechanism in H2O/CH4 plasma. A good pattern transfer of CoFeB films masked with TiN films was successfully achieved using the H2O/CH4 gas mix.  相似文献   

19.
To clarify the dielectric properties of BaTiO3 with nanometer size region, it is necessary to fabricate the dense structure composed of BaTiO3 nanoparticles. In the present study, BaTiO3 nanoparticles were directly deposited on Pt/Al2O3/SiO2/Si substrate by introducing Ba(DPM)2 and Ti(OiPr)4 into an inductively coupled plasma (ICP). The optimal condition for preparing dense structure of BaTiO3 nanoparticles was investigated by changing the substrate temperature. Single phase BaTiO3 of perovskite structure was obtained at the substrate temperatures between 773 and 1173 K. The dense structure of BaTiO3 nanoparticles with particle sizes of about 30 nm was successfully obtained at the substrate temperature of 773 K. At the substrate temperature>873 K, the deposited nanoparticles sintered to be the columnar structure. The εr and tan δ of the BaTiO3 nanoparticles were estimated to be 285 and 6.6%, respectively (1 kHz and 100 mV). The phase of the BaTiO3 nanoparticles were found to be paraelectric by the measurement of C-V curves. The breakdown field of the dense structure of BaTiO3 nanoparticles was estimated to be 649 kV/cm according to I-V curves. These features are favorable for applying the structure to the dielectric layer of multilayer capacitors.  相似文献   

20.
D.S. Jang  H.Y. Lee  J.J. Lee 《Thin solid films》2009,517(14):3967-3970
The optical and photocatalytic properties of TiO2 are closely related to crystalline structures, such as rutile and anatase. In this paper, TiO2 films were produced by inductively coupled plasma (ICP) assisted chemical vapor deposition (CVD) without extra heating of the substrate, and the effect of H2 addition on the structure and optical properties of the films was investigated. After increasing the partial pressure of H2, the structure of the TiO2 films changed from anatase to rutile, which usually appears at high temperatures (> 600 °C). The light transmittance decreased with increasing the H2 flow rate due to the increased surface roughness. The photocatalytic activity of the anatase TiO2 film was better than that of the rutile TiO2 film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号