首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 687 毫秒
1.
掩蔽层材料选择比低是硅高深宽比微结构实现的限制之一.为了获得高质量的掩蔽层材料,利用感应耦合等离子体(Inductively Coupled Plasma,ICP)刻蚀方法,选择SiO2,MgO,Al作为掩蔽层材料,通过研究刻蚀过程中射频功率及气体流量对SiO2,MgO,Al及Si刻蚀速率变化的影响,获得了SF6等离子体对Si与SiO2,Si与MgO,Si与Al的选择比.结果表明:MgO薄膜作为掩蔽层、射频功率为800 W,气体流量为50 sccm或80 sccm是深刻蚀中适宜的工艺参数.  相似文献   

2.
报道了用CF4作工作气体的ECR刻蚀poly-Si技术,研究了微波功率、气体流量、气压和射频偏置功率对刻蚀速率的影响,并对实验结果进行了讨论.实验中微波等离子体功率范围在100~500 W,CF4气体流量在10~50 cm3/min(标准状态下)范围,气压在0.25~2.5 Pa范围,射频偏置功率在0~300 W范围,对应的刻蚀速率为10.4~46.2 nm/min.  相似文献   

3.
本文提出了低气压下无极感应耦合气体放电的一维理论模型。放电为磁场激励,稳定的等离子体由交变电磁场所维持,等离子体密度分布和电子温度由折合半径所确定,密度绝对值由电磁功率所确定。文中还讨论了放电系统等效电路的一些性质。  相似文献   

4.
为了得到电感耦合等离子体反应刻蚀ZnS的工艺参数,采用CH4∶H2∶Ar(1∶7∶5)作为刻蚀气体,在ZnS刻蚀机理的基础上,分析各工艺因素对ZnS刻蚀速率和刻蚀后表面粗糙度的影响.实验结果表明:当气体总流量39sccm、偏压功率80W、射频功率300W时,ZnS刻蚀速率为18.5nm/min,表面粗糙度Ra小于6.3nm,刻蚀后表面沉积物相对较少;Ar含量变化对刻蚀速率和表面粗糙度影响较大.给出了刻蚀速率和表面粗糙度随气体总流量、Ar含量、偏压功率和射频功率的变化趋势.  相似文献   

5.
等离子体天线的发射特性   总被引:4,自引:0,他引:4  
采用自行设计的高频发射机(10-20 MHz),时环天线和线天线进行了激发实验.结果表明:直接耦合环形天线在射频(RF)功率大于10 W时,可激发天线中的气体形成等离子体,射频功率降到5 W时,等离子体仍可维持.对于线天线,直接耦合时射频功率达到20 W时可激发产生等离子体;电容耦合时射频功率达到30 W时可激发产生等离子体,射频功率降至10 W时,两种耦合方式均可维持等离子体.用环形金属天线作接收天线,剥量了环状和线状等离子体天线在直接耦合方式和电容耦合方式时的发射性能,结果表明:等离子体天线与普通金属天线一样具有辐射性能,接收到的信号电平随发射信号电平增大而增大,呈近似线性关系.因此,等离子体天线可以用于高频无线电通信.  相似文献   

6.
采用压缩波导反应腔结构和热辅助激发的方式产生了可稳定运行于近一个大气压条件下的微波辉光氢等离子体,通过发射光谱诊断技术测量了连续放电过程中氢Balmer线系的Hα、Hβ、Hγ和Hδ谱线,并分析了谱线强度随气压的变化趋势及其机理.实验结果表明,氢Balmer线系的Hα、Hβ、Hγ和Hδ谱线的强度都有随着气压上升先升高后下降的趋势,等离子体的电子激发温度则是随着气压的升高先降低后趋向于稳定.  相似文献   

7.
在空气静止、气压为12 kPa(对应超声速风洞试验段的气压)条件下,研究射频放电等离子体的光谱特性;在马赫数为2的超声速来流中,研究射频放电等离子体激励对激波/边界层干扰非定常性的控制效果. 实验结果表明:在相同的激励频率下,随着加载功率的增大,表征电子温度的相对光谱强度增大,而表征振动温度和电子密度的相对光谱强度基本保持不变;保持加载功率不变,随着激励频率的增大,表征电子温度的相对光谱强度先增大后减小,而表征振动温度和电子密度的相对光谱强度没有明显变化. 在未施加激励时,激波振荡的主导频率为低频;在施加射频放电等离子体激励后,激波低频振荡减弱,高频振荡增强,激波特征频率从低频转向高频,再附边界层出现高能量漩涡结构.  相似文献   

8.
开发了一种新型线形同轴耦合大面积微波等离子体源,针对该新型等离子体源放电空间等离子密度及分布的不明确性,利用朗缪尔单探针法研究了不同放电参数下该等离子体源等离子体密度及空间分布情况。以微波功率,氢氩总流量(氢氩流量比为3∶1)和距石英管的距离Z为3个因素设计正交实验探究了宏观放电参量对等离子体参数的影响。测试结果表明该型等离子体源的电子密度均在1010cm-3以上。其次,诊断了在距石英管Z为14 cm处,等离子体参数沿空间水平的分布情况,探究薄膜的最佳沉积区域。最后,根据等离子诊断情况进行硅薄膜的沉积,由XRD结果表明薄膜为多晶结构,拉曼光谱显示沉积硅薄膜晶化率均在92%以上,沉积速率在8 nm/min。  相似文献   

9.
微波等离子体化学气相沉积金刚石光谱分析   总被引:1,自引:0,他引:1  
采用等离子体光谱分析微波等离子体化学气相(MPCVD)沉积金刚石过程中基团的空间分布及甲烷浓度变化时基团浓度的变化情况.实验过程中分别测量了氢原子的Hα(656.19 nm)、Hβ(486.71 nm)和Hγ(434.56 nm)谱线,以及基团CH(431.31 nm)、C2(515.63 nm)谱线.结果表明:氢原子和基团CH、C2的浓度沿等离子体柱的径向先增加再减小.随着甲烷浓度逐步增加,氢原子及基团CH、C2的浓度相应增加,其中C2基团所受影响最大.  相似文献   

10.
研究了基于InGaAsP/InP应变多量子阱片的氩等离子体诱导量子阱混合工艺方法.当等离子刻蚀机(ICP)的射频(RF)功率为480 W、ICP功率为500 W、处理时间为1 min时,ICP处理过程中氩(Ar)等离子体对量子阱片的刻蚀深度小于牺牲层的厚度500 nm,晶格缺陷将产生在牺牲层内.样品在纯氮气条件、不同温度下快速退火2 min,缺陷扩散至量子阱层诱发量子阱混合.不同实验条件的样品PL光谱表明:随着退火温度和ICP功率的增加,量子阱片的光致发光谱(PL)峰值波长会发生显著的蓝移,分别在750 ℃和500 W时趋于饱和;此时获得的蓝移为110 nm,PL强度为原生片的55%,量子阱层仍保持了较好的晶格特性.  相似文献   

11.
Laser-induced spark ignition of hydrogen-oxygen-argon mixtures was experimentally investigated using a Q-swiched Nd:YAG laser to break down the gas at 532 nm. The laser-based high-speed schlieren system was employed to record flame front evolution for the gas mixtures with different initial pressure or laser output energy or argon dilution. The results show that the breakdown of the gas leads to the generation of ellipsoidal plasma. The rarefaction waves create the toroidal rings at the leading and trailing edges of the plasma, which provides a reasonable explanation for inward wrinkle of the plasma and the resultant flame. The toroidal rings at leading edge decays more rapidly and a gas lobe is generated that moves towards the laser. The hot gas in the plasma induces the generation of the spark kernel. Affected by the very weak shock wave or compression waves reflected off the wall, the initial laminar flame decelerates. The arc flame front interactions with the wall, reversed shock wave or compression waves, rarefaction waves, etc. induce the transition from laminar flame to turbulent one. These induce the transition from laminar flame to turbulent flame. For stoichiometric hydrogen-oxygen mixtures diluted by 76.92% argon at an initial pressure of 53.33 kPa, the minimum output energy of the laser is 15 mJ for successful laser-induced spark ignition. With increasing initial pressure or the output energy of the laser, or decreasing argon dilution, the speed of the flame front increases.  相似文献   

12.
建立了液化石油气在H2/Ar等离子体射流中热解制乙炔的整套实验装置,包括反应器,淬冷器、气相色谱分析系统等。通过实验研究探讨了LPG进料速率等离子体发生器的功率对原料LPG的转化率,乙炔产率和选择性以及出口气体中各组分浓度的影响,此外,还对反应过程中和成的两种形式的固体产物进行了分析。  相似文献   

13.
 考察了在常温常压条件下利用滑动弧放电等离子体,使CH4与CO2重整制取合成气的效果,分析了供给电压、原料流速、预热温度等参数对转化率、选择性和制氢能耗的影响.结果表明,滑动弧放电可突破常温时热力学平衡的限制,有效促进重整反应的进行.与其他等离子方法相比,滑动弧放电的能量效率显著提高.增大电压或预热温度,可提高氢气选择性,促进氢气生成;增加流量,能量效率随之提高,但流量过大时,氢气选择性显著下降.当CH4与CO2的量比为1∶1、供给电压为8 640 V、喷嘴流速为130 m/s、预热温度为400 K时,制氢综合能耗最低,为103.1 kJ/L,此时单位氢气电耗为18.6 kJ/L,转化能力为6.37 mmol/kJ.  相似文献   

14.
大气压短间隙放电是是产生冷等离子体的一种有效手段,常见的交流驱动电源方式有射频电源和kHz交流电源,而这两种不同频率电源所导致的气隙放电特性对比尚鲜有研究。本文以1 mm间隙的针-板电极这一极不均匀电场结构作为放电气隙,将之等效为球坐标系下的一维结构,建立基于迁移-扩散近似下的多组分、局部能量近似的经典等离子体流体模型,仿真研究了13.56 MHz射频(RF)电源或50 kHz交流(LF)电源所驱动的1 mm氦气(混合0.1%氮气)间隙的放电过程,关注了在1 mW和1 W这两种不同的沉积能量下的放电特性。结果表明:RF放电在1 mW时表现为电晕放电模式,此时间隙中的带电粒子密度低,且主要集中在功率电极附近;当沉积功率升高至1 W时,间隙放电则呈现出明显的辉光放电特征,电极附近出现鞘层,且气隙中间存在准电中性的等离子体区域;LF放电的起始电压幅值要高于RF,且LF放电随电压升高会较为平顺地从电晕放电模式过渡到辉光放电模式,而不存在明显的转换过程。对两种频率的放电而言,电晕放电模式下,潘宁电离是主要的电离路径;而辉光放电模式下,直接的电子碰撞电离成为主导的电离通道。此外,在相同的沉积功率下,LF放电的最大电子密度、电子温度和正离子温度都要要高于RF放电,但时间均匀性较差,呈现出明显的脉冲放电特性。  相似文献   

15.
为了解决小电流、高电压下电弧火箭等离子体的稳定性问题,研究了电弧火箭发动机对电源调理单元(PCU)的输出特性要求,基于逆变电源脉宽调制技术与峰值电流型控制原理,以MOSFET为主功率器件,研制了一台电弧火箭电源调理单元,给出了Arcjet工作时的实验数据,通过增加PCU输出电压的闭环反馈电路,可以使PCU的输出外特性呈现正阻性,保证电弧的稳定燃烧,实验结果表明,该电源调理单元能使电弧火箭发动机达到高电压工作模式(100 V,10 A),保持电弧工作的稳定性。  相似文献   

16.
为了考察气相脉冲放电时水中H2O2生成规律,采用针-板式反应器,进行了实验,研究放电电压、气体流速、电极间距以及pH值对水中H2O2生成的影响.实验结果表明:提高放电电压,能够促进水中H2O2的生成;当气体流速为1.6L/min时,水中H2O2浓度最大;减小电极间距,电场强度增大,有利于H2O2的生成;酸性条件时水中H2O2浓度较大.  相似文献   

17.
为了除去石油加工过程中所产生的含有大量有毒气体硫化氢的尾气,采用常压微波等离子体法研究了在纯氩、纯二氧化碳及氩与二氧化碳混合气体三种载气条件下,微波功率对硫化氢分解效率的影响.含有硫化氢的源气在微波的作用下形成等离子体射流从而被分解成氢气和单质硫.结果表明:一定范围内(400~1 100W)增加微波功率有利于提高硫化氢的分解效率,当微波功率继续增加时,不同的载气(纯氩气、纯二氧化碳、氩气与二氧化碳混合气体)条件下,其分解效率变化趋势不同.在纯氩载气条件下,微波功率继续增加,硫化氢的分解效率会下降;在纯二氧化碳载气和氩气与二氧化碳混合载气条件下,硫化氢的分解效率随微波的继续增加而不变.相同微波功率条件下,载气为氩气和二氧化碳混合气体时,硫化氢分解效率最高,说明二氧化碳载气有利于促进硫化氢的分解.当气源为二氧化碳、氩气及硫化氢混合气体,且流量比为8∶1∶1,总流量为1 000mL/min,微波功率为1 300W时,硫化氢转化率最高达98.64%.从节能方面考虑,在实际应用中微波功率可设定为900W.  相似文献   

18.
根据理论分析和磁场仿真结果设计并加工了一款用于黑障通信实验的电感耦合等离子体发生器,该装置能产生具有形状为半球形、厚度小于5 cm、等离子体密度为1×1018 m?3量级等黑障典型等离子体鞘层特征的等离子体薄层。采用等离子体发射光谱诊断的方法,研究了等离子体发生器产生等离子体的电子激发温度和电子数密度,并分析了线圈功率对等离子体特性的影响规律,对等离子体发生器乃至对电小天线辐射调控系统的进一步优化有参考作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号