首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
相变微胶囊功能流体所具有的相变区间是影响其强化传热效应和工程应用价值的主要因素。采用双流体数学模型通过数值模拟发现:在层流条件下,双流体模型能够很好地模拟颗粒相体积分数、管径和R e对相变区间的影响。功能流体的相变段长度和总吸热量都随着这三个因素的增大而显著增大。同时相变段长度还取决于入口温度和边界条件等因素。以直链烷烃为相变材料的功能流体在相变段的蓄热能力相近。但在同R e下,功能流体的相变段长度和总吸热量都随着囊芯材料相变温度的升高而减小。入口温度是影响相变材料熔化速度的重要因素。相变段的长度、总温升和总吸热量与流体入口过冷度都呈线性关系。在第一类边界条件下,相变段长度与壁面过热度呈指数为负的幂指数关系,而相变段总温升和总吸热量都随壁面过热度的增大而增大。  相似文献   

2.
微胶囊相变悬浮液在空调系统中的应用前景   总被引:1,自引:0,他引:1  
赵兵全  赵镇南 《节能技术》2006,24(4):294-296
介绍了一种功能性热流体—微胶囊相变悬浮液,它的浓度为15%时,载冷能力是水的两倍多;处于湍流时,表现出非牛顿流体的特性,流动阻力小于水;浓度为20%时,层流对流换热的修正努塞尔数Nuc是单相流体的2~3倍,传热性能远优于单相流体。因此,微胶囊相变悬浮液应用于空调系统可大幅度提高换热器的传热性能和空调系统的运行效率,达到节能的效果。  相似文献   

3.
提出了一种可以同时作为储能介质与传热流体的新型相变微胶囊悬浮液(MPCS),设计和搭建试验台,分别在层流和湍流条件下在等热流密度的光滑圆管中对MPCS进行了强制对流换热实验,研究了悬浮液浓度、流量、泵送功率和加热速率对其流动及传热特性的影响。结果表明:对于质量分数为5%的MPCS,当微胶囊中相变材料分别处于固体、固体-液体和液体状态时,对应的努塞尔数平均增大了23.9%、20.5%和9.1%;与纯水相比,MPCS作为在热力系统应用的传热流体可以实现强化传热,但是需要在传热实验中控制好相变过程才能使MPCS的传热性能优于水。  相似文献   

4.
连续螺旋折流板换热器动态特性研究   总被引:1,自引:1,他引:0  
建立了可进行壳管式换热器动态特性试验研究系统,通过试验研究的方法对水-油为换热工质的连续螺旋折流板换热器动态特性进行了试验研究,进口流量扰动为等百分比流量特性,研究了四种流量扰动方式下水和油出口温度的动态响应。同时研究了在一定R e下,不同的流体扰动量对换热器进出口温升的影响,得到了换热器进出口温升与流体扰动量之间的关联式。实验表明,较于气体而言,液-液换热系统温度的动态响应时间比较长,研究发现在正负的流量扰动下,螺旋折流板换热器进出口温度变化呈现线性变化,进出口温升在正负流量扰动下其变化曲线具有对称特征。  相似文献   

5.
为了降低核电站严重事故中碎片床冷却性分析的不确定性,采用2个尺寸范围的砂石颗粒模拟构建碎片床,并进行了单相与两相流动实验。基于测量的单相流动阻力压降和Ergun方程计算出砂石颗粒的有效直径,在此基础上进行气-水两相流动实验,测量并获得了颗粒堆积床内的两相流动阻力压降,验证碎片床内两相流动阻力模型。结果表明:对于小尺寸砂石颗粒堆积床,其两相流动阻力压降随气相雷诺数的增大呈现上升趋势,在气相雷诺数较低时,Lipinski模型计算值与实验值吻合较好,随着气相雷诺数增大,实验值逐渐接近Reed模型计算值;对于大尺寸颗粒堆积床,相间摩擦力对两相流动阻力有重要影响,其两相流动阻力压降随气相雷诺数的增大呈先下降后上升的趋势。  相似文献   

6.
在压力为9~35 MPa,质量流速为600~1800 kg/(m2·s),干度为0~1的工况范围内,对φ28.6 × 5.8(mm)的四头内螺纹水冷壁管中单相及两相流体在绝热和受热条件下的摩擦压降特性进行了试验研究.结果表明:在受热和绝热两种条件下内螺纹管的阻力特性不同,受热管的单相摩擦压降系数f比绝热管的小;受热管的两相摩擦倍率φ2l0比绝热管的大.无论是受热,还是绝热情况下,压力对φ2l0的影响很大,φ2l0随压力增大而减小;质量流速的影响很小.随蒸汽干度增加,φ2l0先增加,随后增幅减小.提出了由试验获得的单相水摩擦压降系数以及汽水两相流体摩擦压降的计算式.  相似文献   

7.
试验研究蜂窝蓄热体内单向流及往复流阻力特性.单向流动中研究蓄热体长度、结构参数对阻力特性影响,并分析得到热态条件下蓄热体阻力计算公式;往复流动中研究换向半周期、总阻力对阻力波动特性的影响.实验结果表明,蓄热体阻力并非与其长度成绝对正比关系;热态时蓄热体阻力与流体温度和速度有关;往复流动时蓄热体阻力波动幅值、最小稳定时间受总阻力及空截面流速影响.  相似文献   

8.
矩形微通道中流体流动阻力和换热特性实验研究   总被引:5,自引:1,他引:4  
以去离子水为流体工质,对其在矩形微尺度通道中的流动阻力和传热特性进行了实验研究。通过测量流量、进出口压力和温度等参数,获得了流体流过微通道时的摩擦阻力系数、对流换热过程中的热流通量和N u等。微尺度通道中流体流动的摩擦阻力系数较常规尺度通道中的摩擦阻力系数小,仅是常规尺度通道中摩擦阻力系数的20%~30%;且流动状态由层流向湍流转捩的临界R e也远小于常规尺度通道的。微尺度通道中对流换热的N u与常规尺度通道的显著不同。流量较小时,N u较常规尺度通道中充分发展段的小;随着水流量的增加,微通道的N u迅速增加,并很快超过常规尺度通道的N u,表现出微尺度效应。热流通量对微尺度通道中对流换热N u存在影响,其影响规律在不同流速条件下呈不同趋势,流速较小时,N u基本保持不变;而在流速较大时,N u随热流通量增加而呈增加趋势。  相似文献   

9.
相变微胶囊悬浮液(MPCS)可作为热交换介质和储热流体,但其导热率较低导致其应用受到一定的限制。以水为基液使用相变微胶囊(MPCM)制备MPCS,加入氧化锌(ZnO)颗粒以提高MPCS导热率。使用旋转流变仪、差式热量扫描仪、导热仪分别测定了MPCS的黏度、相变潜热和导热系数等物理性质。设计并搭建了试验台,在内径6 mm的圆管中,使用水、MPCS以及ZnO@MPCS在层流和湍流下进行强制对流换热实验,通过对比其换热情况分析ZnO对MPCS换热特性的影响。结果表明:加入ZnO的MPCS具有良好的储热性和导热性,1%ZnO@5%MPCS导热系数较5%MPCS提高了17.9%。层流条件下MPCS的平均局部换热系数低于水,1%ZnO@5%MPCS平均局部换热系数比水高6.5%;湍流时,1%ZnO@5%MPCS在相同质量流量和功率下的平均局部换热系数相较于水提高了15.7%。  相似文献   

10.
为了研究柴油机喷孔表面粗糙度对小直径喷孔内空化流动的影响,采用Fluent流体仿真软件,对不同喷油压力、不同孔壁粗糙度下直径为0.1 mm喷孔的内部空化流动特性进行仿真分析。结果表明:光滑壁面条件下,喷油压力及压差越大,空化水平越强,喷孔流量因数下降越严重;粗糙壁面条件下,流场内气体体积分数随粗糙度增大而降低,粗糙度增大使壁面流体的湍动能增加,但同时使壁面流体的速度降低,导致喷孔流量因数随粗糙度的增大先增后减,喷油压力越高,流量因数出现最高点粗糙度也越大;壁面粗糙度增大会增大对近壁面流场的干扰,抑制近壁面流体空化,在全空化压力、低壁面粗糙度的条件下抑制作用更为明显。  相似文献   

11.
This study conducted experiments on the air-side performance of novel L-footed spiral fin-and-tube heat exchangers that were faced with airflow at high Reynolds numbers (3500–13,000). The examined heat exchangers have a multipass parallel-and-counter cross-flow type of water flow arrangement. This flow arrangement is a combination of the parallel cross-flow and the counter cross-flow. This type of water flow arrangement may be the best fit for the reverse-flow system, because it can provide constant heat-exchange effectiveness for every flow reversal direction at the same airflow rate. Ambient air was used as a working fluid on the air side and hot water for the tube side. This way the effect of the number of tube rows on the heat transfer and friction characteristics of L-footed spiral fin-and-tube heat exchangers was clearly observed. The effect of the fin's outside diameter on the pressure drop was also studied. The results show that the number of tube rows has no significant effect on the air-side heat transfer or on friction characteristics at high Reynolds numbers. However, the fin's outside diameter shows a significant effect on the pressure drop. The pressure drop increases as the fin's outside diameter increases for the same number of tube rows.  相似文献   

12.
In this study, the single phase pressure drop characteristics of smooth and microfin tubes are investigated experimentally. The horizontal test section is a counter flow double tube heat exchanger with water flowing in the inner tube and cooling water flowing in the annulus. By means of experimental setup, required temperature and pressure measurements are recorded and friction factor coefficient and pressure drop of smooth and microfin tubes are determined. Experiments are conducted for mass flow rates in the range between 0.023 kg/s and 0.100 kg/s and effect of Reynolds number on pressure drop is investigated. By using experimental results, Blasius type friction factor equations are developed for both smooth and microfin tubes. Experimental results for both smooth and microfin tubes are compared with correlations given in the literature.  相似文献   

13.
In pin-fin heat sinks, the flow within the core exhibits separation and hence does not lend itself to simple analytical boundary layer or duct flow analysis of the wall friction. In this paper, we present some findings from an experimental and modeling study aimed at obtaining physical insight into the behavior of square, in-line pin fin heat sinks. In addition to the detailed pressure measurements, the overall thermal resistance was measured as a function of Reynolds number and by-pass height. A “two-branch by-pass model” was developed, in which a one-dimensional difference approach was used to model the fluid flow through the heat sink and its top by-pass duct. Inlet and exit pressure losses were as important as the core pressure drop in establishing the overall flow and pressure drop. Comparisons were made with the data using friction and heat transfer coefficients available in the literature for infinitely long tube bundles of circular cross-section. It was shown that there is a good agreement between the temperature predictions based on the model and the experimental data at high approach velocities for tall heat sinks, however the discrepancy increases as the approach velocity and heat sink height decrease. The validated model was used to identify optimum pin spacing as a function of clearance ratio.  相似文献   

14.
Numerical investigation of fluid flow and heat transfer characteristics over louvered fins and flat tube in compact heat exchangers is presented in this study. Three-dimensional simulations of single and double row tubes with louvered fins have been conducted. Simulations are performed for different geometries with varying louver pitch, louver angle, fin pitch and tube pitch and for different Reynolds number. Conjugate heat transfer and conduction through the fins are considered. The air-side performance of heat exchanger is evaluated by calculating Stanton number and friction factor. The results are compared with experiment and a good agreement is observed. The local Nusselt number variation along the top surface of the louver is calculated and effects of geometrical parameters on the average heat transfer coefficient is computed. Design curves are obtained which can used to predict the heat transfer and the pressure drop for a given louver geometry.  相似文献   

15.
This article considers the problem of conjugate heat transfer in circular pipes with finite heated length to examine the effects of wall conduction on the heat transfer characteristics of solid–liquid phase-change material suspension flow. A mixture continuum approach is adopted in the formulation of the energy equation, with an approximate enthalpy model describing the phase-change process in the phase-change material particles. From numerical simulations via the finite-volume approach, it was found that the conduction heat transfer propagating along the pipe wall results in significant preheating of the suspension flow in the nondirectly heated region upstream of the heated section, where melting of the particles may occur and therefore the contribution of the latent heat transfer to convection heat dissipation over the heated section is markedly attenuated. Contributions of the sensible and latent heat transfer to the total heat transfer rate of the suspension flow over the heated section were delineated quantitatively for various sets of the relevant dimensionless parameters, including the particle volumetric concentration, the modified Stefan number, the Peclet number of suspending fluid, the wall thickness ratio, and the wall-to-fluid thermal conductivity ratio.  相似文献   

16.
Three-dimensional CFD simulations are carried out to investigate heat transfer and fluid flow characteristics of a four-row plain fin-and-tube heat exchanger using the Commercial Computational Fluid Dynamics Code ANSYS CFX 12.0. Heat transfer and pressure drop characteristics of the heat exchanger are investigated for Reynolds numbers ranging from 400 to 2000. Fluid flow and heat transfer are simulated and results compared using both laminar and turbulent flow models (k-ω) with steady and incompressible fluid flow. Model validation is carried out by comparing the simulated case friction factor (f) and Colburn factor (j) with the experimental data of Wang et al. [1]. Reasonable agreement is found between the simulations and experimental data. In this study the effect of geometrical parameters such as fin pitch, longitudinal pitch and transverse pitch of tube spacing are studied. Results are presented in the form of friction factor (f) and Colburn factor (j). For both laminar and transitional flow conditions heat transfer and friction factor decrease with the increase of longitudinal and transverse pitches of tube spacing whereas they increase with fin pitches for both in-line and staggered configurations. Efficiency index increases with the increase of longitudinal and transverse pitches of tube spacing but decreases with increase of fin pitches. For a particular Reynolds number, the efficiency index is higher in in-line arrangement than the staggered case.  相似文献   

17.
The convective heat transfer and pressure drop characteristics of flow in corrugated channels have been experimentally investigated. Experiments were performed on channels of uniform wall temperature and of fixed corrugation ratio over a range of Reynolds number, 3220 ≤ Re ≤ 9420. The effects of channel spacing and phase shift variations on heat transfer and pressure drop are discussed. Results of corrugated channels flow showed a significant heat transfer enhancement accompanied by increased pressure drop penalty. The average heat transfer coefficient and pressure drop enhanced by a factor of 2.6 up to 3.2 and 1.9 to 2.6 relative to those for parallel plate channel, respectively, depending upon the spacing and phase shift. The friction factor increased with increasing channel spacing and its phase shift. The effect of spacing variations on heat transfer and friction factor was more pronounced than that of phase shift variation, especially at high Reynolds number. Comparing results of the tested channels by considering the flow area goodness factor (j/f), it was better for corrugated channel with spacing ratio, ? ≤ 3.0 and of phase shift, Ø ≤ 90°. Comparisons of the present data with those available in literature are presented and discussed.  相似文献   

18.
A computational investigation of laminar forced convection of supercritical CO2 flow in horizontal duct with plane symmetric sudden expansion and its bifurcation phenomenon are presented in this study. The computations were conducted at various Reynolds numbers for cases of different wall heat fluxes. A parameter named recirculation disturbance intensity is introduced that is aimed to shed some light on the reduction of flow stability when Reynolds number or wall heat flux increases. The Nusselt number distribution in the symmetric flow regime is presented, the variations of peak Nusselt number and its relative location are discussed. Wall friction coefficient and pressure coefficient distributions are presented and discussed.  相似文献   

19.
The two-phase pressure drop characteristics of the pure refrigerants R410a, R502, and R507a during condensation inside a horizontal tube-in-tube heat exchanger were investigated to determine the two-phase friction factor, the frictional pressure drop, and the total pressure drop. The two-phase friction factor and frictional pressure drop are predicted by means of an equivalent Reynolds number model. Eckels and Pate's experimental data, presented in Choi et al.'s study provided by NIST, were used in the analysis. In their experimental setup, the horizontal test section was a 3.81 m long countercurrent flow double tube heat exchanger with refrigerant flowing in the inner smooth copper tube (8.01 mm i.d.) and cooling water flowing in the annulus (13.7 mm i.d.). Their test runs were performed at saturated condensing temperatures from 38.33 °C to 51.78 °C while the mass fluxes were between 119 and 617 kg m−2 s−1 for the horizontal test section. The separated flow model was modified by ten different void fraction models and correlations, as well as six different correlations of friction factors, in order to determine the best combination for the validation of the experimental pressure drop values. Carey's friction factor was found to be the most predictive. The refrigerant side total and frictional pressure drops were determined within ± 30% using the above friction factor and the void fraction combinations of Carey, Baroczy, and Armand for R410a; and those of Carey, Spedding and Spence, and Rigot for R502 and R507a. The equivalent Reynolds number model was modified using the void fraction correlation of Rigot in order to determine the frictional condensation pressure drop and the two-phase friction factor. The effects of vapor quality and mass flux on the pressure drop are discussed in this paper. The importance of using the alternative void fraction and friction factor models and correlations for the separated flow model is also addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号