首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 716 毫秒
1.
2.
3.
Alphaviruses, particularly Sinbis virus and Semliki Forest virus, are proving to be useful vectors for the expression of heterologous genes. In infected cells, these self-replicating vectors (replicons) transcribe a subgenomic mRNA that codes for a heterologous protein instead of the structural proteins. We reported recently that translation of the reporter gene lacZ is enhanced 10-fold when the coding sequences of this gene are fused downstream of and in frame with the 5' half of the capsid gene (I. Frolov and S. Schlesinger, J. Virol. 68:8111-8117, 1994). The enhancing sequences, located downstream of the AUG codon that initiates translation of the capsid protein, have a predicted hairpin structure. We have mutated this region by making changes in the codons which do not affect the protein sequence but should destabilize the putative hairpin structure. These changes caused a decrease in the accumulation of the capsid-beta-galactosidase fusion protein. When these alterations were inserted into the capsid gene in the context of the intact Sindbis virus genome, they led to a decrease in the rate of virus formation but did not affect the final yield. We also altered the original sequence to one that has 12 contiguous G.C base pairs and should form a stable hairpin. The new sequence was essentially as effective as the original had been in enhancement of translation and in the rate of virus formation. The position of the predicted hairpin structure is important for its function; an insertion of 9 nucleotides or a deletion of 9 nucleotides decreased the level of translation. The insertion of a hairpin structure at a particular location downstream of the initiating AUG appears to be a way that alphaviruses have evolved to enhance translation of their mRNA, and, as a consequence, they produce high levels of the structural proteins which are needed for virus assembly. This high level of translation requires an intracellular environment in which host cell protein synthesis is inhibited.  相似文献   

4.
Chicken embryo fibroblasts infected with an RNA- temperature-sensitive mutant (ts24) of Sindbis virus accumulated a large-molecular-weight protein (p200) when cells were shifted from the permissive to nonpermissive temperature. Appearance of p200 was accompanied by a decrease in the synthesis of viral structural proteins, but [35S]methionine tryptic peptides from p200 were different from those derived from a 140,000-molecular-weight polypeptide that contains the amino acid sequences of viral structural proteins. Among three other RNA- ts mutants that were tested for p200 formation, only one (ts21) produced this protein. The accumulation of p200 in ts24- and ts21-infected cells could be correlated with a shift in the formation of 42S and 26S viral RNA that led to an increase in the relative amounts of 42S RNA. These data indicate that p200 is translated from the nonstructural genes of the virion 42S RNA and further suggest that this RNA does not function effectively in vivo as an mRNA for the Sindbis virus structural proteins.  相似文献   

5.
Sindbis virus is a positive strand RNA virus that has provided a valuable model for studying virus structure and replication. It is also being developed as a vector for the expression of heterologous proteins. Many studies with this virus are carried out in cultured BHK cells where infection is usually highly cytopathic and within 1 or 2 days after infection all of the cells are dead. Weiss et al. had established a persistently infected culture of BHK cells by infecting the cells with a virus preparation highly enriched in defective interfering (DI) particles and had isolated an attenuated virus, SIN-1 virus, from the culture [Weiss et al. (1980) J. Virol. 33, 463-474]. SIN-1 virus, free of DI particles, was able to establish a persistent infection in BHK cells. We initiated studies to determine what changes in the genome of the virus were responsible for this phenotype. We describe here the cDNA cloning and sequencing of the 5' terminus and the four nonstructural protein genes from SIN-1 virus. A single coding mutation in the nsP2 gene (a predicted change of Pro-726 --> Ser) produced a virus that was able to establish persistent infection in BHK cells. Additional mutations in the other genes were required to decrease the synthesis of viral RNA to a level similar to that found in cells infected with SIN-1 virus. Incorporation of the nsP2 mutation into a Sindbis virus expression vector led to a higher level of synthesis of the reporter protein, beta-galactosidase, than that obtained with the original Sindbis virus replicon.  相似文献   

6.
7.
Efficient manipulation of the regulatory mechanisms controlling host cell gene expression provides the means for productive infection by animal viruses. Upon infecting the host cell, viruses must: (i) bypass the cellular antiviral defense mechanisms to prevent the translational blocks imposed by the interferon pathway; and (ii) effectively "hijack" the host protein synthetic machinery into mass production of virion protein components. The multicomponent regulatory nature of cellular gene expression has provided the means of selecting for a diverse range of mechanisms utilized by animal viruses to ensure that replication efficiency is maintained throughout the virus life cycle. One important research component of the careful examination of gene regulation is those studies that focus on elucidating the mechanisms by which viruses control mRNA translation during host cell infection. Much of the work in our laboratory has focused on elucidating the strategies by which human immunodeficiency virus type 1 and influenza virus regulate protein synthesis during infection. Here we describe the ways in which these two distinctly different RNA viruses ensure the selective and efficient translation of their viral mRNAs in infected cells. These strategies include circumvention of the deleterious effects associated with activation of the interferon-induced protein kinase, PKR. Herein we describe our methodologies designed to elucidate the translational regulation in cells infected by these viruses. We conclude with a brief summary of new directions, utilizing these methods, taken toward understanding the translational control mechanisms imposed by these viral systems, and how our studies of virally infected cells have allowed us to identify growth-regulating components of normal, uninfected cells.  相似文献   

8.
AUG-unrelated translation initiation was found in an insect picorna-like virus, Plautia stali intestine virus (PSIV). The positive-strand RNA genome of the virus contains two nonoverlapping open reading frames (ORFs). The capsid protein gene is located in the 3'-proximal ORF and lacks an AUG initiation codon. We examined the translation mechanism and the initiation codon of the capsid protein gene by using various dicistronic and monocistronic RNAs in vitro. The capsid protein gene was translated cap independently in the presence of the upstream cistron, indicating that the gene is translated by internal ribosome entry. Deletion analysis showed that the internal ribosome entry site (IRES) consisted of approximately 250 bases and that its 3' boundary extended slightly into the capsid-coding region. The initiation codon for the IRES-mediated translation was identified as the CUU codon, which is located just upstream of the 5' terminus of the capsid-coding region by site-directed mutagenesis. In vitro translation assays of monocistronic RNAs lacking the 5' part of the IRES showed that this CUU codon was not recognized by scanning ribosomes. This suggests that the PSIV IRES can effectively direct translation initiation without stable codon-anticodon pairing between the initiation codon and the initiator methionyl-tRNA.  相似文献   

9.
10.
The major coat protein of the L-A double-stranded RNA virus of Saccharomyces cerevisiae covalently binds m7 GMP from 5' capped mRNAs in vitro. We show that this cap binding also occurs in vivo and that, while this activity is required for expression of viral information (killer toxin mRNA level and toxin production) in a wild-type strain, this requirement is suppressed by deletion of SKI1/XRN1/SEP1. We propose that the virus creates decapped cellular mRNAs to decoy the 5'-->3' exoribonuclease specific for cap- RNA encoded by XRN1. The SKI2 antiviral gene represses the copy numbers of the L-A and L-BC viruses and the 20S RNA replicon, apparently by specifically blocking translation of viral RNA. We show that SKI2, SKI3, and SKI8 inhibit translation of electroporated luciferase and beta-glucuronidase mRNAs in vivo, but only if they lack the 3' poly(A) structure. Thus, L-A decoys the SKI1/XRN1/SEP1 exonuclease directed at 5' uncapped ends, but translation of the L-A poly(A)- mRNA is repressed by Ski2,3,8p. The SKI2-SKI3-SKI8 system is more effective against cap+ poly(A)- mRNA, suggesting a (nonessential) role in blocking translation of fragmented cellular mRNAs.  相似文献   

11.
Human immunodeficiency virus type-1 (HIV-1) Rev acts by inducing the specific nucleocytoplasmic transport of a class of incompletely spliced RNAs that encodes the viral structural proteins. The transfection of HeLa cells with a rev-defective HIV-1 expression plasmid, however, resulted in the export of overexpressed, intron-containing species of viral RNAs, possibly through a default process of nuclear retention. Thus, this system enabled us to directly compare Rev+ and Rev+ cells as to the usage of RRE-containing mRNAs by the cellular translational machinery. Biochemical examination of the transfected cells revealed that although significant levels of gag and env mRNAs were detected in both the presence and absence of Rev, efficient production of viral proteins was strictly dependent on the presence of Rev. A fluorescence in situ hybridisation assay confirmed these findings and provided further evidence that even in the presence of Rev, not all of the viral mRNA was equally translated. At the early phase of RNA export in Rev+ cells, gag mRNA was observed throughout both the cytoplasm and nucleoplasm as uniform fine stippling. In addition, the mRNA formed clusters mainly in the perinuclear region, which were not observed in Rev+ cells. In the presence of Rev, expression of the gag protein was limited to these perinuclear sites where the mRNA accumulated. Subsequent staining of the cytoskeletal proteins demonstrated that in Rev+ cells gag mRNA is colocalized with beta-actin in the sites where the RNA formed clusters. In the absence of Rev, in contrast, the gag mRNA failed to associate with the cytoskeletal proteins. These results suggest that in addition to promoting the emergence of intron-containing RNA from the nucleus, Rev plays an important role in the compartmentation of translation by directing RRE-containing mRNAs to the beta-actin to form the perinuclear clusters at which the synthesis of viral structural proteins begins.  相似文献   

12.
13.
Cyclopentenone prostaglandins (PGs) have been shown to inhibit the replication of several DNA and RNA viruses. Here we report on the effect of prostaglandin A1 (PGA1) on the multiplication of a positive strand RNA virus, Sindbis virus, in Vero cells under one-step multiplication conditions. PGA1 was found to inhibit Sindbis virus production dose-dependently, and virus yield was reduced by more than 90% at the concentration of 8 micrograms/ml, which was non-toxic to the cells and did not inhibit DNA, RNA or protein synthesis in Vero cells. The cyclopentenone prostaglandin delta 12-PGJ2 was also shown to be a potent inhibitor of Sindbis virus replication. Virus-induced reduction of [3H]uridine uptake by cells was partially prevented by PGA1 treatment, which also caused a 1 h delay in the peak of virus RNA synthesis. SDS-PAGE analysis of [35S]methionine-labeled proteins showed that PGA1 moderately inhibited the synthesis of the viral structural proteins E1, E2 and C, and induced the synthesis of a 72 kDa M(r) protein, identified as a heat-shock protein related to the HSP70 group, in both virus-infected and uninfected cells. Actinomycin D treatment completely prevented PGA1-antiviral activity, indicating that a cellular product is responsible for this action. PGA1-induced HSP70 is a good candidate for this role.  相似文献   

14.
15.
The RNA of satellite tobacco necrosis virus (STNV) is a monocistronic messenger that lacks both a cap and a poly(A) tail. Translation of STNV RNA in vitro is promoted by a 120-nt translational enhancer domain (TED) in the 3'-untranslated region. TED also stimulates translation of heterologous mRNAs. In this study, we show that TED stimulates translation of a cat mRNA by increasing translation efficiency to the level of capped mRNA. This stimulatory activity is not impaired by translation through TED. TED stimulates translation efficiency from different positions within the mRNA, varying from the 5' end to 940 nt downstream of the coding region. Duplication of TED has an additive effect on translation stimulation only when located at both ends of the mRNA. On dicistronic RNAs, TED stimulates translation of both cistrons to the same extent. These data suggest that TED acts primarily by recruiting the translational machinery to the RNA.  相似文献   

16.
A trans-encapsidation assay was established to study the specificity of picornavirus RNA encapsidation. A poliovirus replicon with the luciferase gene replacing the capsid protein-coding region was coexpressed in transfected HeLa cells with capsid proteins from homologous or heterologous virus. Successful trans-encapsidation resulted in assembly and production of virions whose replication, upon subsequent infection of HeLa cells, was accompanied by expression of luciferase activity. The amount of luciferase activity was proportional to the amount of trans-encapsidated virus produced from the cotransfection. When poliovirus capsid proteins were supplied in trans, >2 x 10(6) infectious particles/ml were produced. When coxsackievirus B3, human rhinovirus 14, mengovirus, or hepatitis A virus (HAV) capsid proteins were supplied in trans, all but HAV showed some encapsidation of the replicon. The overall encapsidation efficiency of the replicon RNA by heterologous capsid proteins was significantly lower than when poliovirus capsid was used. trans-encapsidated particles could be completely neutralized with specific antisera against each of the donor virus capsids. The results indicate that encapsidation is regulated by specific viral nucleic acid and protein sequences.  相似文献   

17.
Human T-cell lymphotropic virus type I (HTLV-I) infection is typically associated with long incubation periods between virus exposure and disease manifestation. Although viral protein expression is considered to play an important role in the pathogenesis of HTLV-I-associated diseases, limited information is known regarding host cell mechanisms that control viral gene expression. This study was designed to evaluate modulation of HTLV-I gene expression following induction of the cellular stress response in HTLV-I-infected lymphocytes. The cellular stress response was elicited by treatment with either Na arsenite or thermal stress and was monitored by demonstrating increased expression of the 72-kDa heat shock protein. Induction of the cellular stress response in HTLV-I-infected lymphocytes resulted in significantly increased HTLV-I-mediated syncytia formation due to enhanced HTLV-I envelope (gp46) expression. Intracellular viral proteins and released p24 capsid protein were increased in stressed infected lymphocytes as compared to nonstressed infected lymphocytes. Furthermore, HTLV-I-LTR reporter gene constructs had increased activity (three- to sixfold) in a transiently transfected, uninfected lymphocyte cell line following induction of the cellular stress response. Quantitation of HTLV-I RNA expression by slot blot analysis of infected lymphocytes suggested variable increases in RNA accumulation. Northern blot analysis demonstrated no qualitative changes in expression of RNA species. These data suggest a relationship between modulation of viral replication and a basic cellular response to stress and have important implications for understanding host cell control mechanisms of HTLV-I expression.  相似文献   

18.
Translation of most eukaryotic mRNAs and many viral RNAs is enhanced by their poly(A) tails. Hepatitis C virus (HCV) contains a positive-stranded RNA genome which does not have a poly(A) tail but has a stretch of 98 nucleotides (X region) at the 3'-untranslated region (UTR), which assumes a highly conserved stem-loop structure. This X region binds a polypyrimidine tract-binding protein (PTB), which also binds to the internal ribosome entry site (IRES) in HCV 5'-UTR. These RNA-protein interactions may regulate its translation. We generated a set of HCV RNAs differing only in their 3'-UTRs and compared their translation efficiencies. HCV RNA containing the X region was translated three- to fivefold more than the corresponding RNAs without this region. Mutations that abolished PTB binding in the X region reduced, but did not completely abolish, enhancement in translation. The X region also enhanced translation from another unrelated IRES (from encephalomyocarditis virus RNA), but did not affect the 5'-end-dependent translation of globin mRNA in either monocistronic or bicistronic RNAs. It did not appear to affect RNA stability. The free X region added in trans, however, did not enhance translation, indicating that the translational enhancement by the X region occurs only in cis. These results demonstrate that the highly conserved 3' end of HCV RNA provides a novel mechanism for enhancement of HCV translation and may offer a target for antiviral agents.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号