首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The purpose of the present study was to explore the different mechanisms of [Ca2+]i oscillations induced by high concentrations of either carbachol (CCh) or extracellular Ca2+ ([Ca2+]o). First, we compared the oscillations induced by CCh at concentrations of 100-300 micromol/L and [Ca2+]o (5 mmol/L) in the single rat ventricular myocyte. Second, we studied CCh- and [Ca2+]o-induced [Ca2+]i oscillations following either interference with the production of inositol trisphosphate (IP3), reductions in cytosolic Ca2+ ([Ca2+]i), inhibition of Ca2+ influx and Na+-Ca2+ exchange or depletion of Ca2+ from its intracellular store. 2. The [Ca2+]i oscillations induced by CCh were frequent and were superimposed on [Ca2+]i transients in electrically stimulated cells, whereas those induced by high [Ca2+]o were occasional and occurred in quiescent cells and between [Ca2+]i transients in electrically stimulated cells. In both cases, [Ca2+]i oscillations were preceded by an increase in resting levels of [Ca2+]i. 3. Carbachol-induced [Ca2+]i oscillations were accompanied by an increase in amplitude and prolongation of the time of decline to 80% of the peak of the [Ca2+]i transient, while high [Ca2+]o-induced [Ca2+]i oscillations were the opposite. 4. A reduction of [Ca2+]o to 0.1 mmol/L and treatment with Ni2+ or ryanodine or 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid AM (BAPTA-AM) abolished the [Ca2+]i oscillations induced by both CCh and high [Ca2+]o. 5. The calcium channel blockers verapamil and nifedipine and inhibitors of phospholipase C (neomycin and U-73122) abolished the [Ca2+]i oscillations induced by CCh; Li+ accelerated the onset of the [Ca2+]i oscillations induced by CCh. 6. These observations suggest that the mechanisms responsible for the [Ca2+]i oscillations induced by CCh and high [Ca2+]o are different from each other. Other than an increase in extracellular Ca2+ influx as a mechanism common for both CCh- and high [Ca2+]o-induced [Ca2+]i oscillations, the CCh-induced [Ca2+]i oscillations involve influx of Ca2+ via L-type Ca2+ channels, Na+-Ca2+ exchange, mobilization of intracellular Ca2+ and IP3 production.  相似文献   

2.
In Fura-2 loaded-single guinea pig adrenal chromaffin cells, muscarine, nicotine and KCl all caused an early peak rise in intracellular Ca concentration ([Ca2+]i) followed by a sustained rise. In Ca(2+)-free solution, muscarine, but neither nicotine nor KCl, caused a transient increase in [Ca2+]i, which was partially reduced by preceding application of caffeine or by treatment with ryanodine plus caffeine. In voltage-clamped cells at a holding potential of -60 mV, the muscarine-induced [Ca2+]i rise, especially its sustained phase, decreased in magnitude. Intracellular application of inositol 1,4,5-trisphosphate caused a transient increase in [Ca2+]i and inhibited the following [Ca2+]i response to muscarine without affecting responses to nicotine and a depolarizing pulse. Muscarine evoked membrane depolarization following brief hyperpolarization in most cells tested. There was a significant positive correlation between the amplitude of the depolarization and the magnitude of the sustained rise in [Ca2+]i. Muscarine-induced sustained [Ca2+]i rise was much greater in the current-clamp mode than that in the voltage-clamp mode. The sustained phase of [Ca2+]i rise and Mn2+ influx in response to muscarine were suppressed by a voltage-dependent Ca2+ channel blocker, methoxyverapamil. These results suggest that stimulation of muscarinic receptors causes not only extracellular Ca2+ entry, but also Ca2+ mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Voltage-dependent Ca(2+)-channels may function as one of the Ca2+ entry pathways activated by muscarinic receptor in guinea pig adrenal chromaffin cells.  相似文献   

3.
Helodermin-caused vascular relaxation was simultaneously measured with intracellular Ca2+ concentration ([Ca2+]i) in rat mesenteric artery. Helodermin caused concentration-dependent relaxation in the mesenteric artery preconstricted with norepinephrine (NE). Helodermin-caused relaxation was accompanied by decrease in [Ca2+]i, D-cis-Diltiazem, a Ca2+ channel blocker, also lowered the [Ca2+]i and tension increased by NE. However, helodermin relaxed the artery more efficiently than D-cis-diltiazem, suggesting that the peptide decreased myofilament Ca2+ sensitivity. The vascular relaxation and the corresponding decrease in [Ca2+]i induced by helodermin were partly, but significantly attenuated by glibenclamide. Helodermin-induced vascular responses were mimicked by vasoactive intestinal polypeptide (VIP) or forskolin. Furthermore, helodermin increased cAMP contents in the mesenteric artery. These findings show that vasodilatation induced by helodermin is attributable to lowered [Ca2+]i of arterial smooth muscle partly through the activation of glibenclamide-sensitive K+ channels, and to decrease in the myofilament Ca2+ sensitivity. The increase in the cellular cAMP content probably plays a key role in the peptide-induced vasorelaxation.  相似文献   

4.
In bovine tracheal smooth muscle, carbachol (CCh, 1 microM) and high K+ (72.7 mM) induced sustained increases in cytosolic Ca2+ level ([Ca2+]i), myosin light chain (MLC) phosphorylation and force of contraction. Forskolin (FK, 1-10 microM) inhibited the CCh-induced increase in [Ca2+]i, MLC phosphorylation and force in parallel. In contrast, FK inhibited the high K(+)-induced contraction and MLC phosphorylation without changing [Ca2+]i. In the absence of extracellular Ca2+ (with 0.5 mM EGTA), CCh (10 microM) and caffeine (20 mM) induced transient increase in [Ca2+]i and contractile force by releasing Ca2+ from cellular store. FK strongly inhibited the CCh-induced Ca2+ transient, but failed to inhibit the caffeine-induced Ca2+ transient. In the absence of external Ca2+, 12-deoxyphorbol 13-isobutylate (DPB, 1 microM) induced sustained contraction without increase in [Ca2+]i and MLC phosphorylation. FK inhibited this contraction without changing [Ca2+]i. In permeabilized muscle, Ca2+ induced contraction in a concentration-dependent manner. FK (10 microM) and cAMP (1-100 microM) shifted the Ca(2+)-force curve to the higher Ca2+ levels. CCh with GTP, GTP gamma S or DPB enhanced contraction in the presence of constant level of Ca2+. Forskolin and cAMP also inhibited the enhanced contractions in the permeabilized muscle. In the permeabilized, thiophosphorylated muscle, ATP induced contraction in the absence of Ca2+. cAMP (300 microM) had no effect on this contraction. These results suggest that forskolin inhibits agonist-induced contraction in tracheal smooth muscle by multiple mechanisms of action; 1) inhibition of MLC phosphorylation by reducing Ca2+ influx and Ca2+ release, 2) inhibition of MLC phosphorylation by changing the MLC kinase/phosphatase balance, and 3) inhibition of regulatory mechanism which is not dependent on MLC phosphorylation.  相似文献   

5.
The effects of extracellular magnesium concentration ([Mg2+]ex) on thyrotropin-releasing hormone (TRH)-stimulated intracellular free calcium mobilization and prolactin secretion were investigated concomitantly with measurement of the intracellular free magnesium concentration ([Mg2+]i). TRH-stimulated intracellular free calcium mobilization was significantly inhibited when the medium was replaced by high Mg2+ medium ([Mg2+]ex = 10 mM) in normal Ca2+ medium. The inhibitory effects of high Mg2+ became apparent concomitantly with an increase in [Mg2+]i from 0.7 to 1.3 mM. High Mg2+ significantly inhibited TRH-induced PRL secretion in a dose-dependent manner in normal Ca2+ medium. TRH-stimulated inositol triphosphate (IP3) production was rather augmented by the replacement with high Mg2+ medium. In summary, high Mg2+ inhibits Ca2+ influx stimulated by TRH in the rat pituitary lactotropes, possibly with the involvement of [Mg2+]i increase. These results have general importance in relation to high Mg(2+)-induced suppression of the biological functions of cells.  相似文献   

6.
Divalent cation movement characterizes the final common pathway of cellular death from ischemic or metabolic injury. The influx of calcium is an essential step in cellular death. We hypothesized that intracellular magnesium levels may change during the progression to cellular death. Verapamil-sensitive changes in free ionized intracellular Mg2+ ([Mg2+[i) and Ca2+ ([Ca2+]i) levels were estimated in transformed T-lymphocytes exposed to metabolic inhibitors. Separate experiments used a Mg(2+)-sensitive fluoroprobe, fura-2 (Ex 1,344, Ex 2,376, Em 500), and a Ca(2+)-sensitive fluoroprobe, fura-2 (Ex 1,340, Ex 2,380, Em 510). Chemical anoxia (sodium cyanide 1 mM, iodoacetic acid 10 mM) caused a gradual increase in [Ca2+]i (control 126 +/- 13 nM) to > 1 mM by 10 min. This increase in [Ca2+]i was not affected by verapamil treatment. In separate experiments, [Mg2+]i levels were monitored during chemical anoxia. The specificity of mag-fura for Mg2+ over Ca2+ was reflected in the absence of a response to the lymphocyte Ca2+ mobilizer OKT-3. Uncorrected control [Mg2+]i levels (.4 +/- .1 mM) were not affected by the combined cyanide-iodoacetate treatment. A small increase in mag-fura-2 fluorescence was noted, probably due to binding of Ca2+ to the fluoroprobe when [Ca2]i exceeded 1 mM. Elimination of Ca2+ from the extracellular buffer increased the resting estimate of intracellular [Mg2+] to 1.6 + .1 mM. These results indicate that 1) extracellular Ca2+ can interfere with the fluorescent determination of intracellular magnesium concentration, and 2) intracellular free Mg2+ concentrations do not change in this cell line during chemical anoxia.  相似文献   

7.
An immortalized cell line (designated MDCT) has been extensively used to investigate the cellular mechanisms of electrolyte transport within the mouse distal convoluted tubule. Mouse distal convoluted tubule cells possess many of the functional characteristics of the in vivo distal convoluted tubule. In the present study, we show that MDCT cells also possess a polyvalent cation-sensing mechanism that is responsive to extracellular magnesium and calcium. Southern hybridization of reverse transcribed-polymerase chain reaction (RT-PCR) products, sequence determination and Western analysis indicated that the calcium-sensing receptor (Casr) is expressed in MDCT cells. Using microfluorescence of single MDCT cells to determine cytosolic Ca2+ signaling, it was shown that the polyvalent cation-sensing mechanism is sensitive to extracellular magnesium concentration ([Mg2+]o) and extracellular calcium concentration ([Ca2+]o) in concentration ranges normally observed in the plasma. Moreover, both [Mg2+]o and [Ca2+]o were effective in generating intracellular Ca2+ transients in the presence of large concentrations of [Ca2+]o and [Mg2+]o, respectively. These responses are unlike those observed for the Casr in the parathyroid gland. Finally, activation of the polycation-sensitive mechanism with either [Mg2+]o or [Ca2+]o inhibited parathyroid hormone-, calcitonin-, glucagon- and arginine vasopressin-stimulated cAMP release in MDCT cells. These studies indicate that immortalized MDCT cells possess a polyvalent cation-sensing mechanism and emphasize the important role this mechanism plays in modulating intracellular signals in response to changes in [Mg2+]o as well as in [Ca2+]o.  相似文献   

8.
The effect of AMPA-receptor stimulation on MMP and on the concentration of intracellular calcium ([Ca2+]i) was studied in dissociated CGC from rat pups, by flow cytometry. In the presence of cyclothiazide, AMPA induced a sodium-independent decrease in MMP up to 30.7+/-2.5%. This effect was antagonized by CNQX and NBQX. Mepacrine and dibucaine reversed the effect of AMPA on MMP, suggesting that it is mediated by a release of arachidonic acid. AMPA alone induced a slight (about 7%) increase in [Ca2+]i. In the presence of cyclothiazide, AMPA induced a concentration-dependent [Ca2+]i increase up to 29.10+/-2.10% that was not reversed by flunarizine. This increase was similar to that observed in a Na+-free medium, and was antagonized by CNQX and NBQX, but not by MK-801. Mitochondria play a key role in the modulation of [Ca2+]i since a significant [Ca2+]i increase was found in the presence of FCCP. On the other hand, the dantrolene-sensitive calcium pools do not participate in the [Ca2+]i increase induced by stimulation of AMPA receptors. It is concluded that when AMPA-receptor desensitization is blocked, a decrease in MMP and an increase in [Ca2+]i occurs, which could be additional events to potentiate neuronal cell death induced by glutamate.  相似文献   

9.
The effect of external calcium concentration ([Ca2+]o) on membrane potential-dependent calcium signals in isolated tiger salamander rod and cone photoreceptor inner segments was investigated with patch-clamp and calcium imaging techniques. Mild depolarizations led to increases in intracellular Ca2+ levels ([Ca2+]i) that were smaller when [Ca2+]o was elevated to 10 mM than when it was 3 mM, even though maximum Ca2+ conductance increased 30% with the increase in [Ca2+]o. When external calcium was lowered to 1 mM [Ca2+]o, maximum Ca2+ conductance was reduced, as expected, but the mild depolarization-induced increase in [Ca2+]i was larger than in 3 mM [Ca2+]o. In contrast, when photoreceptors were strongly depolarized, the increase in [Ca2+]i was less when [Ca2+]o was reduced. An explanation for these observations comes from an assessment of Ca2+ channel gating in voltage-clamped photoreceptors under changing conditions of [Ca2+]o. Although Ca2+ conductance increased with increasing [Ca2+]o, surface charge effects dictated large shifts in the voltage dependence of Ca2+ channel gating. Relative to the control condition (3 mM [Ca2+]o), 10 mM [Ca2+]o shifted Ca2+ channel activation 8 mV positive, reducing channel open probability over a broad range of potentials. Reducing [Ca2+]o to 1 mM reduced Ca2+ conductance but shifted Ca2+ channel activation negative by 6 mV. Thus the intracellular calcium signals reflect a balance between competing changes in gating and permeation of Ca2+ channels mediated by [Ca2+]o. In mildly depolarized cells, the [Ca2+]o-induced changes in Ca2+ channel activation proved stronger than the [Ca2+]o-induced changes in conductance. In response to the larger depolarizations caused by 80 mM [K+]o, the opposite is true, with conductance changes dominating the effects on channel activation.  相似文献   

10.
We investigated the effects of cytosolic Mg2+ on ryanodine receptor Ca2+ release channel (RyR) of bovine cardiac sarcoplasmic reticulum incorporated into planar lipid bilayers recording single channel activities. Channels were activated by > or = 0.1 microM Ca2+ in the cis solution. At constant Ca2+, application of Mg2+ (0.1-1 mM) to cis side decreased channel activity in a concentration-dependent manner. A half maximal blocking concentration (Kd) was 35 microM and a complete block was obtained at 1 mM. In the presence of 1 mM free Mg2+ in cis solution, the relation between the channel open probability (Po) and concentration of free Ca2+ in cis solution ([Ca2+]cis) shifted to the right, indicating the competition of Mg2+ and Ca2+. Blocking effects of Mg2+ on RyR were antagonized by increasing [Ca2+]cis > or = 0.1 mM. In the presence of 1 m Mg2+ and 1 mM Ca2+ in cis solution, the channel conductance was markedly depressed to approximately 400 pS (n = 7) from 603 +/- 40 pS (mean +/- S.D., n = 22) in the absence of Mg2+, indicating the flickering block. These results show that Mg2+ causes a direct inhibition of RyR in cardiac SR and this inhibition may be mediated through two different mechanisms. A competition of Mg2+ and Ca2+ at a Ca2+ sensitive site on the RyR and a flickery block of the open channel by Mg2+.  相似文献   

11.
Septal neurons from embryonic rats were grown in tissue culture. Microfluorimetric and electrophysiological techniques were used to study Ca2+ homeostasis in these neurons. The estimated basal intracellular free ionized calcium concentration ([Ca2+]i) in the neurons was low (50-100 nM). Depolarization of the neurons with 50 mM K+ resulted in rapid elevation of [Ca2+]i to 500-1,000 nM showing recovery to baseline [Ca2+]i over several minutes. The increases in [Ca2+]i caused by K+ depolarization were completely abolished by the removal of extracellular Ca2+, and were reduced by approximately 80% by the 'L-type' Ca2+ channel blocker, nimodipine (1 microM). [Ca2+]i was also increased by the excitatory amino acid L-glutamate, quisqualate, AMPA and kainate. Responses to AMPA and kainate were blocked by CNQX and DNQX. In the absence of extracellular Mg2+, large fluctuations in [Ca2+]i were observed that were blocked by removal of extracellular Ca2+, by tetrodotoxin (TTX), or by antagonists of N-methyl D-aspartate (NMDA) such as 2-amino 5-phosphonovalerate (APV). In zero Mg2+ and TTX, NMDA caused dose-dependent increases in [Ca2+]i that were blocked by APV. Caffeine (10 mM) caused transient increases in [Ca2+]i in the absence of extracellular Ca2+, which were prevented by thapsigargin, suggesting the existence of caffeine-sensitive ATP-dependent intracellular Ca2+ stores. Thapsigargin (2 microM) had little effect on [Ca2+]i, or on the recovery from K+ depolarization. Removal of extracellular Na+ had little effect on basal [Ca2+]i or on responses to high K+, suggesting that Na+/Ca2+ exchange mechanisms do not play a significant role in the short-term control of [Ca2+]i in septal neurons. The mitochondrial uncoupler, CCCP, caused a slowly developing increase in basal [Ca2+]i; however, [Ca2+]i recovered as normal from high K+ stimulation in the presence of CCCP, which suggests that the mitochondria are not involved in the rapid buffering of moderate increases in [Ca2+]i. In simultaneous electrophysiological and microfluorimetric recordings, the increase in [Ca2+]i associated with action potential activity was measured. The amplitude of the [Ca2+]i increase induced by a train of action potentials increased with the duration of the train, and with the frequency of firing, over a range of frequencies between 5 and 200 Hz. Recovery of [Ca2+]i from the modest Ca2+ loads imposed on the neuron by action potential trains follows a simple exponential decay (tau = 3-5 s).  相似文献   

12.
The effects of adrenomedullin (AM), a hypotensive peptide, were investigated in cultured human oligodendroglial cell line KG-1C. Human AM increased the intracellular Ca2+ concentration ([Ca2+]i) at concentrations greater than 10(-7) M. Human calcitonin gene-related peptide (CGRP), a peptide structurally related to AM, also increased [Ca2+]i with a potency similar to that of AM. AM increased [Ca2+]i in the absence of extracellular Ca2+. Further, AM increased inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) level in a concentration-dependent manner similar to that of AM-induced [Ca2+]i, suggesting that AM-induced elevation of [Ca2+]i is due to Ca2+ release from Ins(1,4,5)P3-sensitive stores. AM (10(-9) to 10(-6) M) increased cAMP in a concentration-dependent manner. Forskolin also increased cAMP, but did not mimic the [Ca2+]i-raising effect of AM. These findings suggest that functional AM receptors are present in oligodendroglial KG-1C cells and that AM increases [Ca2+]i through a mechanism independent of cAMP.  相似文献   

13.
We monitored simultaneously the changes in the intracellular sodium concentration ([Na+]i) and intracellular calcium concentration ([Ca2+]i) in individual neurons from primary cultures of cerebellar granule cells loaded with sodium-binding benzofuran isophthalate and fluo-3. An application of glutamate (50 microM) in Mg(2+)-free medium containing 10 microM glycine evoked [Na+]i and [Ca2+]i increases that exceeded 60 mM and 1 microM, respectively. The kinetics of [Na+]i and [Ca2+]i decreases after the termination of the glutamate pulse were different. [Na+]i failed to decrease immediately after glutamate withdrawal and the delay in the onset of [Na+]i decrease after the glutamate pulse termination was proportional to the glutamate dose, the glutamate pulse duration, and the extent of [Ca2+]i elevation elicited by glutamate. The kinetics of [Ca2+]i decrease were biphasic, with the first phase occurring immediately after glutamate withdrawal and the second phase being correlated in time with a [Na+]i value lower than 15-20 mM. These results were interpreted to indicate that the glutamate-evoked calcium influx may lead to sodium homeostasis destabilization. The delay in the restoration of the sodium gradient may in turn prolong the neuronal exposure to toxic [Ca2+]i values, due to the decrease in the efficiency of the Na+/Ca2+ exchanger to extrude calcium. The glutamate effects on [Na+]i and [Ca2+]i were potentiated by glycine. Glycine (10 microM) added alone also evoked [Na+]i and [Ca2+]i increases; this effect was inhibited by a competitive inhibitor of the N-methyl-D-aspartate receptor, 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, indicating an involvement of endogenous glutamate.  相似文献   

14.
Concentration-dependent changes in cyclic AMP (cAMP), site-specific phosphorylation of phospholamban, the intracellular calcium ([Ca2+]i) transient and contraction were measured in isolated rat ventricular myocytes exposed to the beta-adrenoceptor agonist isoprenaline. Cyclic AMP was measured by [125I]-cAMP scintillation proximity assay, phosphorylation of phospholamban at Ser16 and Thr17 was assessed using a pair of site-specific polyclonal antibodies, and [Ca2+]i was monitored with the fluorescent dye fura 2. Cyclic AMP rose to twice basal levels in the presence of 10(-6) M isoprenaline. The maximum increase in phosphorylation at Ser16 and Thr17 of phospholamban was seen at 10(-7) M isoprenaline. At this stage Ser16 phosphorylation was six times higher, and Thr17 phosphorylation was three times higher than that recorded in the absence of isoprenaline. Phosphorylation at Ser16 correlated more closely with changes in the [Ca2+]i transient and contraction than did phosphorylation at Thr17. This is the first study of its kind to measure simultaneous changes in cAMP, the phosphorylation of phospholamban, the [Ca2+]i transient and contraction over a range of concentrations of beta-agonist. The results suggest that phosphorylation of phospholamban at Thr17 is of lesser physiological relevance to the effects of beta-adrenergic stimulation on the heart than phosphorylation at Ser16.  相似文献   

15.
In single cells isolated from guinea-pig ileal smooth muscle, held under voltage clamp at -40 mV or -50 mV by patch pipette in the whole-cell recording mode, carbachol (CCh) evoked an oscillatory inward cationic current. The frequency of current oscillations increased with increasing CCh concentration. CCh-evoked current oscillations were followed very closely by oscillations in intracellular free Ca2+ estimated from the Indo-1 signal, and were abolished by inclusion of EGTA in the pipette solution. Ryanodine and heparin, but not nifedipine, blocked the generation of current oscillations. CCh-evoked current oscillations were abolished upon withdrawal of extracellular calcium and restored upon its reintroduction. Inclusion of GTP[gamma S] in the pipette solution caused the generation of an oscillatory inward current, which was blocked by ryanodine. The present results are consistent with the hypothesis that CCh-evoked cationic current is gated by activation of a G protein and is steeply dependent on [Ca2+]i, fluctuations in the release of Ca2+ from stores during carbachol's action produce oscillations in [Ca2+]i which cause similar oscillations in the cationic current.  相似文献   

16.
A calcium-sensing receptor (CaR) has functionally been described in the cortical thick ascending limb of Henle's loop (CTAL) of rat and mouse. This G protein-coupled receptor activates phospholipase C and increases the intracellular Ca2+ concentration. We observed that in the mouse CTAL cAMP formation, induced by 10(-8) mol/l AVP, was inhibited by more than 90% when the extracellular Ca2+ concentration ([Ca2+]e) was increased from 0.5 to 3 mmol/l. Measurements of transepithelial potential difference (PDte) in rat and mouse CTAL and medullary thick ascending limb (mTAL) segments and of transepithelial ion net fluxes in the mouse CTAL (isotonic perfusion conditions: 150 mmol/l NaCl in the lumen and bath) showed that an increase in the [Ca2+]e had no effect on basal and arginine vasopressin (AVP, 10(-10) mol/l)-stimulated transepithelial PDte, NaCl and Mg2+ transport. However, Ca2+ reabsorption was strongly inhibited by increased [Ca2+]e. Addition of AVP reversed this inhibitory effect of increased [Ca2+]e. Under hypotonic perfusion conditions (lumen 50 mmol/l NaCl; bath 150 mmol/l NaCl), a high [Ca2+]e induced a 50% decrease in Mg2+ reabsorption which was restored by AVP. Under these conditions, the effects on Ca2+ transport described above were still observed. In conclusion, activation of the CaR in the mouse TAL has no effect on basal and AVP-stimulated transepithelial NaCl reabsorption despite its large inhibitory effect on cAMP synthesis. The CaR, however, could play a role in the regulation of transepithelial Ca2+ and Mg2+ reabsorption.  相似文献   

17.
The present study elucidated the precise mechanism of 5-hydroxytryptamine (5-HT)-induced increase of intracellular Ca2+ concentration ([Ca2+]i) in cultured vascular smooth muscle cells isolated from rat aortic media. [Ca2+]i was measured using fluorescent Ca2+ indicator, fura-2. 5-HT caused a dose-dependent increase in [Ca2+]i, which was completely inhibited by ketanserin. alpha-Methyl-5-HT had an equipotent effect to 5-HT. Diltiazem at 10 microM partially suppressed the 5-HT-induced increase in [Ca2+]i. 5-HT also augmented Mn2+ influx, when monitored by Mn2+ quenching of fura-2 fluorescence. When extracellular Ca2+ (1.3 mM) was removed, a decrease in resting level and a small, transient increase in [Ca2+]i were observed. 5-HT stimulation also induced an increase in the production of inositol triphosphate. 5-HT-induced increase in [Ca2+]i was significantly, but partially inhibited by staurosporin and H-7. Phorbol 12-myristate 13-acetate induced an increase in [Ca2+]i, which was abolished by removal of extracellular Ca2+. 5-HT-induced increase in [Ca2+]i was not affected by the pretreatment with pertussis toxin (PTX), and was not accompanied by a change in cyclic AMP content. These results suggest that, in cultured rat aortic smooth muscle cells, 5-HT increases [Ca2+]i via 5-HT2 receptor subtype by inducing influx of extracellular Ca2+ partially through L-type voltage-dependent Ca2+ channel, as well as by mobilizing Ca2+ from its intracellular stores. Activation of protein kinase C may be positively involved in the regulatory mechanism of Ca2+ influx, but PTX-sensitive G protein and cyclic AMP seem to be not involved.  相似文献   

18.
1. Procaine (0.03-10 mM) inhibited carbachol (CCh)-induced amylase release from rat isolated pancreatic acini in a competitive manner. Kinetic analysis of the relation between CCh concentrations and the amount of amylase released in the presence of various procaine concentrations indicated that procaine caused competitive inhibition with the affinity constant (pA2) value of 5.00 +/- 0.08. 2. Receptor binding assay confirmed that procaine (0.01-10 mM) competitively inhibited [N-methyl-3H]-scopolamine chloride ([3H]-NMS) binding to its receptor with binding affinity (pKi) of 4.63 +/- 0.10. 3. Procaine transformed CCh-evoked [Ca2+]i dynamics: the initial rise in [Ca2+]i followed by a gradual decay during continuous stimulation with 3 microM CCh was transformed by 0.3 mM procaine to the oscillatory [Ca2+]i dynamics, which resembled the response to 0.3 microM CCh in the absence of procaine. The initial phase of [Ca2+]i oscillation corresponded to the initial phase of CCh-induced amylase release in isolated perfused acini. 4. Procaine (0.3-3 mM) did not inhibit the secretory response to cholecystokinin octapeptide (CCK-8) in isolated incubated acini. A higher concentration of procaine (10 mM) caused weak but significant inhibition of the response to only limited concentrations of CCK-8, 30 and 100 pM. Procaine lower than 10 mM was ineffective on [125I]-BH-CCK-8 binding, although procaine (10 mM) caused weak but significant inhibition of the binding.  相似文献   

19.
Mastoparan, a tetradecapeptide from wasp venom, stimulated exocytosis in a concentration-dependent manner, which was enhanced by pertussis toxin pre-treatment, in the insulin secreting beta-cell line RINm5F. Mastoparan (3-20 microM) also elevated cytosolic free calcium concentration ([Ca2+]i), a rise that was not attenuated by nitrendipine. Divalent cation-free Krebs-Ringer bicarbonate (KRB) medium with 0.1 mM EGTA nullified the mastoparan-induced increase in [Ca2+]i, suggesting that the peptide increased Ca2+ influx but not through the L-type voltage-dependent Ca2+ channel. Depletion of the intracellular Ca2+ pool did not affect the mastoparan-induced elevation of [Ca2+]i. Remarkably, in divalent cation-free KRB medium with 0.1 mM EGTA and 2 microM thapsigargin in which mastoparan reduced [Ca2+]i, the mastoparan-stimulated insulin release was similar to that in normal Ca(2+)-containing KRB medium. Inhibitors of protein kinase C, such as bisindolylmaleimide, staurosporine, and 1-O-hexadecyl-2-O-methyl-rac-glycerol did not suppress the mastoparan-stimulated insulin release. Mastoparan at 10-20 microM did not increase cellular cAMP levels, nor did mastoparan at 5-10 microM affect [3H]arachidonic acid release. In conclusion, although mastoparan increased [Ca2+]i, this increase was not involved in the stimulation of insulin release. Rather, the data suggest that mastoparan directly stimulates exocytosis in a Ca(2+)-independent manner. As GTP-binding proteins (G proteins) are thought to be involved in the process of exocytosis and as mastoparan is known to exert at least some of its effects by activation of G proteins, an action of mastoparan to activate the putative stimulatory Ge (exocytosis) protein is likely.  相似文献   

20.
During prolonged application of glutamate (20 min), patterns of increase in intracellular Ca2+ concentration ([Ca2+]i) were studied in HEK-293 cells expressing metabotropic glutamate receptor, mGluR1alpha or mGluR5a. Stimulation of mGluR1alpha induced an increase in [Ca2+]i that consisted of an initial transient peak with a subsequent steady plateau or an oscillatory increase in [Ca2+]i. The transient phase was largely attributed to Ca2+ mobilization from the intracellular Ca2+ stores, but the sustained phase was solely due to Ca2+ influx through the mGluR1alpha receptor-operated Ca2+ channel. Prolonged stimulation of mGluR5a continuously induced [Ca2+]i oscillations through mobilization of Ca2+ from the intracellular Ca2+ stores. Studies on mutant receptors of mGluR1alpha and mGluR5a revealed that the coupling mechanism in the sustained phase of Ca2+ response is determined by oscillatory/non-oscillatory patterns of the initial Ca2+ response but not by the receptor identity. In mGluR1alpha-expressing cells, activation of protein kinase C selectively desensitized the pathway for intracellular Ca2+ mobilization, but the mGluR1alpha-operated Ca2+ channel remained active. In mGluR5a-expressing cells, phosphorylation of mGluR5a by protein kinase C, which accounts for the mechanism of mGluR5a-controlled [Ca2+]i oscillations, might prevent desensitization and result in constant oscillatory mobilization of Ca2+ from intracellular Ca2+ stores. Our results provide a novel concept in which oscillatory/non-oscillatory mobilizations of Ca2+ induce different coupling mechanisms during prolonged stimulation of mGluRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号