首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The corrosion behavior of the as-received steel and the spheroidized steel in acidic chloride environment was investigated. The results indicate the corrosion mode and corrosion rate of two steels are diverse due to their difference in microstructure. For as-received steel with ferrite-pearlite microstructure, severe localized corrosion happens on the pearlite regions, and plenty of cathodic cementite remains in the pits, further strengthening the micro-galvanic effect and accelerating the corrosion rate. While for spheroidized steel with tempered martensite microstructure, the nanosized cementite particles evenly distributed on the ferrite substrate are easy to fall off, which can significantly reduce the cementite accumulation on the steel surface, relieving the acceleration effect of micro-galvanic corrosion.  相似文献   

2.
The effects of bentonite content on the corrosion behavior of low carbon steel in 5 mM NaHCO3+ 1 mM NaCl + 1 mM Na2SO4 solution were investigated by electrochemical measurements combined with X-ray diffraction(XRD) and scanning electron microscopy(SEM). In the initial immersion stage, the cathodic process of low carbon steel corrosion was dominated by the reduction of dissolved oxygen, while it transformed to the reduction of ferric corrosion products with the immersion time. The presence of bentonite colloids could suppress the cathodic reduction of oxygen due to their barrier effect on the diffusion of oxygen. However, the barrier performance of bentonite layer was gradually deteriorated due to the coagulation and separation of bentonite colloids caused by the charge neutralization of iron corrosion products dissolved from the steel substrate. More bentonite colloids could maintain the barrier effect for a long time before it was deteriorated by the accumulation of corrosion products. Conversely,it could lose the performance completely, and the corrosion behavior of low carbon steel reverted to the same as that in the blank solution.  相似文献   

3.
采用EBSD技术和原子力显微镜(AFM)测试了10CrNi5Mo高强钢热轧态和热处理态试样的表面晶界分布特征和微观形貌, 用模拟海水全浸实验方法及电化学阻抗谱技术测试了10CrNi5Mo高强钢在模拟海水中的腐蚀行为。结果表明: 热轧态试样表面具有更高比例的小角度晶界, 经硝酸酒精腐蚀后热处理态试样表面腐蚀更为均匀, 粗糙度更小。进行模拟海水全浸实验时热轧态试样呈现出更好的耐腐蚀性能, 浸泡中期阻抗值增大, 表面腐蚀产物与基体结合更为紧密, 能保护基体防止其与溶液发生电化学反应。  相似文献   

4.
In this work,the beneficial effect of Sn addition on the corrosion resistance mechanism of Cr-Mo low alloy steel was studied.Results demonstrated that Sn improves the corrosion resistance of the steel matrix mainly by influencing the microstructural transformation.Sn addition and the synergistic effect of Sn,Cr,and Mo promote the formation of α-FeOOH,SnO2,SnO,Cr(OH)3,and molybdates,lead to the improved protection and stability of the rust layer.This synergistic effect also endows the inner rust layer with cation selectivity,preventing the further penetration of Cl-and inhibiting the localized corrosion of steel.  相似文献   

5.
为了解葡萄糖与甘氨酸反应产物对碳钢的缓蚀效果,采用失重法、电化学法并结合扫描电镜观察,研究了葡萄糖与甘氨酸反应产物(PGG)对碳钢在1 mol/L HCl溶液中的腐蚀抑制作用。结果发现:PGG对碳钢表现出很好的缓蚀效果,缓蚀效率随添加浓度的增加而增加,在最大浓度250 mg/L时,表现出最好的缓蚀效果,缓蚀效率为94.7%,且缓蚀效率随温度升高而降低。PGG同时抑制了碳钢腐蚀的阴极还原反应和阳极氧化反应过程,为混合型缓蚀剂,是通过多组分的物理和化学联合吸附,在碳钢表面上形成保护性覆盖层,将碳钢与酸溶液隔离,从而起到缓蚀作用,其吸附行为遵循Langmuir吸附等温模型。葡萄糖与甘氨酸反应产物(PGG)是碳钢在1 mol/L HCl溶液中的优良缓蚀剂。  相似文献   

6.
硫酸盐还原菌的生长过程及其对D36钢海水腐蚀行为的影响   总被引:3,自引:0,他引:3  
通过测定海水中硫酸盐还原菌(SRB)的生长曲线及其不同生长阶段的硫离子浓度、D36钢电极体系的氧化还原电位、自腐蚀电位、极化曲线和电化学阻抗谱,研究了硫酸盐还原菌对该体系钢电极腐蚀行为的影响。结果表明,海水中D36钢氧化还原电位和自腐蚀电位主要由体系中硫酸盐还原菌代谢产物硫离子的浓度所决定;体系的阳极和阴极反应速率均在硫酸盐还原菌增殖期增加,而且阳极反应速率衰亡期和残余期保持不变。  相似文献   

7.
为了研究化学酸洗钝化在低熔点金属Sn与304不锈钢粘附过程中的作用,通过浸泡腐蚀实验分析了液态Sn与U型弯曲后的酸洗钝化不锈钢的交互作用行为,探讨了Sn粘附对不锈钢基体浸泡腐蚀性能的影响.实验结果表明:Sn与304不锈钢相互作用在界面处形成了片状(Fe,Cr)Sn2化合物冶金层,酸洗钝化处理改变了冶金结合,使液态Sn与304不锈钢界面成为直接物理接触;U型弯曲破坏了钝化膜的完整性,未能阻止Sn与不锈钢的界面冶金结合,但降低了界面化合物层的厚度.浸泡腐蚀实验结果表明,Sn粘附层促进了不锈钢基体腐蚀.  相似文献   

8.
金属渗碳腐蚀(即尘化)是高温碳氢环境下常发生的灾难性腐蚀。Cr5Mo钢的工程应用量大面广,过去对其渗碳腐蚀研究不够。为此,研究了炉管材料Cr5Mo钢在600℃,50%CO-H2-3%H2O气氛下的尘化腐蚀行为,采用X射线衍射分析了腐蚀试样的物相组成,采用扫描电镜对试样进行了微观形貌分析。结果表明:Cr5Mo钢在试验条件下呈现均匀腐蚀,材料自表面向内依次析出Fe5C2和Fe3C脆性腐蚀产物,经560h尘化腐蚀后的试样平均腐蚀深度约为200μm,而基体材料性质无明显改变。因此Cr5Mo钢在尘化过程中出现的腐蚀减薄是由脆性碳化物层的析出引起的。  相似文献   

9.
为了更好地解决炼厂在流动条件下减二线馏分油对管路的腐蚀问题,研究了流动条件下Q235碳钢和Cr5Mo合金钢的耐环烷酸和硫冲刷腐蚀性能,并与炼厂常用钢材渗铝碳钢和304不锈钢进行比较。结果表明:Cr5Mo钢的腐蚀速率明显小于Q235钢的,酸值越大两者的腐蚀差别越明显(酸值>5 mg KOH/g);随着酸值和硫含量的增大,Q235钢腐蚀速率有明显增大的趋势; Cr5Mo钢的腐蚀速率随着酸值的增大基本保持不变,甚至有一定的下降;相比于Q235(腐蚀速率6.3 mm/a)和Cr5Mo钢(腐蚀速率1.5 mm/a),渗铝碳钢和304不锈钢表现出优异的耐冲刷腐蚀性能,渗铝碳钢腐蚀速率为0.2 mm/a,而304不锈钢几乎没有失重。  相似文献   

10.
The effect of residual dissolved oxygen(DO)on the corrosion behavior of carbon steel in 0.1 M Na HCO_3solution was investigated by electrochemical measurements,corrosion mass loss test,scanning electron microscopy(SEM)and X-ray diffraction(XRD).In the initial immersion stage,the increase of the dissolved oxygen concentration led to the change of from a reductive state of active dissolution to an oxidizing state of pseudo passivation in low carbon steel.While in the final stage,all the steels transformed into the steady state of pseudo passivation.In the anaerobic solution,the formation ofα-Fe OOH was attributed to the chemical oxidization of the ferrous corrosion products and the final cathodic process only included the reduction ofα-Fe OOH,while in the aerobic solution,it included the reduction of oxygen andα-Fe OOH simultaneously.As the main corrosion products,the content ofα-Fe OOH was increased while that of Fe_6(OH)_(12)CO_3was decreased with increasing concentration of dissolved oxygen.The total corrosion mass loss of the steel was promoted with the increase of dissolved oxygen concentration.  相似文献   

11.
对含有SRB海泥中的碳钢的阴极保护的可靠性进行了评价,重点研究了不同保护电位下碳钢的交流阻抗行为,并结合失重法、MPN法细菌计数,得出极化电位、腐蚀速度以及细菌活性之间的关系。3种极化电位下碳钢的腐蚀速度与交流阻抗谱表明,在本试验条件下,碳钢在-950 mV极化电位下受到了较好的保护,腐蚀速度稳定且相对较小。细菌计数表明在较高阴极极化电位下细菌的生长活性与稳定性低于在低电位下的。分析表明,合适的保护电位应该比-950 mV更负。  相似文献   

12.
A sandwich structure with cladding alloyed 316L stainless steel on plain carbon steel was prepared by means of powder metallurgy (PM) processing. Electrolytic Cu and prealloyed bronze (95Cu wt pct, 5Sn wt pct) were added in different contents up to 15% into the surface cladded 316L layers and the effect of alloying concentrations on the corrosion resistance of the 316L cladding layers was studied. The corrosion performances of the cladding samples were studied by immersion tests and potentio-dynamic anodic polarization tests in H_2S0_4 and FeCl_3 solutions. Both 316L and alloyed 316L surface layers with 1.0 mm depth produced by PM cladding had an effect to improve corrosion resistance in H2SO4 and FeCI3 solutions. Small Cu and bronze addition (4%) had a positive effect in H_2SO_4 and FeCl3 solutions. 4% Cu alloyed 316L surface layer produced by PM cladding showed similar anodic polarization behaviour to the 316L cladding layer in H_2SO_4 and FeCl_3 solutions.  相似文献   

13.
Corrosion evolution during immersion tests(up to 43 days) of Ni Cu steel in deaerated 0.1 mol/L bicarbonate solutions was investigated by electrochemical measurements, scanning electron microscopy(SEM) and X-ray diffraction(XRD). Results show that Ni Cu steel transformed from the anodic dissolution in the early stage of immersion to a metastable passive state in the final stage as the open-circuit potential value shifted positively, which was aroused by the precipitation of corrosion products. This process was mainly promoted by the trace amount of oxygen. Simultaneously, dominant cathodic reaction transformed from the hydrogen evolution in early stage to reduction processes of corrosion products in later stages. Possible corrosion processes were discussed with the assistance of a corresponding Pourbaix diagram.  相似文献   

14.
为了进一步探讨X80钢涂层缺陷对耐土壤腐蚀性能及使用寿命的影响,将有无涂层缺陷的X80钢浸泡在玉门土壤模拟溶液中,采用电化学方法分析了其电化学阻抗谱。结果表明:无缺陷涂层的X80钢具有良好的防腐蚀效果;线缺陷涂层在不同测试期内的阻抗谱曲线都呈现为具有2个时间常数的双容抗弧特征;存在涂层缺陷时,外界腐蚀性介质会到达基体,使之腐蚀,随着腐蚀时间的延长,腐蚀产物会在缺陷处堆积;阴极反应形成的OH-增加会促使局部碱性环境的形成,进而导致X80钢涂层与基体界面剥离,发生缝隙腐蚀。  相似文献   

15.
Timber construction relies on connections between members. Traditionally, metallic nails and bolts are used for this. Previous research has shown that these metallic components are subject to corrosion in certain treated timbers. The American Wood Preservers’ Association AWPA E17-99 standard test has been applied using mild steel, hot-dipped galvanised steel (HDG) and 316 stainless steel coupons to examine the feasibility of using aqueous media to model corrosion rates of fastener materials in contact with timber electrolytes. In order to achieve this, comparison has been made with previously published research dealing with corrosion rates in solid timber electrolytes. The results of the corrosion testing in aqueous copper-chrome-arsenate (CCA), copper azole (CuAz) and alkaline copper quaternary (ACQ) timber preservative solutions show that aqueous electrolytes cannot be used to accurately model the corrosion behaviour of mild steel and HDG mild steel timber fixing materials. In contrast to the results obtained in treated timber, HDG steel was found to be the most active material in terms of overall metallic losses during exposure to the aqueous solutions. In addition, CCA was considerably more aggressive than either the CuAz or the ACQ preservatives. The results are discussed in terms of electrolyte pH, metallic passivation and the thermodynamic behaviour of the anodic and cathodic reactions at the mixed (corrosion) potential.  相似文献   

16.
Investigation about the corrosion behavior of Ti alloys in different ambient environment is of great significance for their practical application.Herein,we systematically investigate the corrosion behavior of a newfound Ti-6Al-3Nb-2Zr-1 Mo (Ti80) alloy in hydrochloric acid (HCI) ranging from 1.37 to 7 M,and temperature ranging from 25 to 55 ℃,by means of electrochemical measurements,static immersion tests and surface analysis.Results manifest that increasing either HCI concentration or temperature can accelerate the corrosion of Ti80 alloy via promoting the breakdown of native protective oxide film and then further facilitating the active dissolution of Ti80 matrix.According to potentiodynamic polarization curves,Ti80 alloy displays a spontaneous passive behavior in 1.37 M HCI at 25 ℃,compared to a typical active-passive behavior under the other conditions.As indicated by cathodic Tafel slope,the rate determining step for cathodic hydrogen evolution reaction is likely the discharge reaction step.The apparent activation energies obtained from corrosion current density and maximum anodic current density for Ti80 alloy in 5 M HCI solution are 62.4 and 55.6 kJ mol-1,respectively,which signifies that the rate determining step in the corrosion process of Ti80 alloy is mainly determined by surface-chemical reaction rather than diffusion.Besides,the electrochemical impedance spectroscopy tests demonstrate that a stable and compact oxide film exists in 1.37 M HCl at 25 ℃,whereas a porous corrosion product film forms under the other conditions.Overall,the critical HCI concentration at which Ti80 alloy can maintain passivation at 25 ℃ can be determined as a value between 1.37 and 3 M.Furthermore,the corroded surface morphology characterization reveals that equiaxed α phase is more susceptible to corrosion compared to intergranular β3 phase due to a lower content of Nb,Mo,and Zr in the former.  相似文献   

17.
Titanium alloys, especially β-type alloys containing β-stabilizing elements, constitute a highly versatile category of metallic materials that have been under constant development for application in orthopedics and dentistry. This type of alloy generally presents a high mechanical strength-to-weight ratio, excellent corrosion resistance and low elastic modulus. The purpose of this study is to evaluate the cytotoxicity and adhesion of fibroblast cells on titanium alloy substrates containing Nb, Ta, Zr, Cu, Sn and Mo alloying elements. Cells cultured on polystyrene were used as controls. In vitro results with Vero cells demonstrated that the tested materials, except Cu-based alloy, presented high viability in short-term testing. Adhesion of cells cultured on disks showed no differences between the materials and reference except for the Ti–Cu alloy, which showed reduced adhesion attributed to poor metabolic activity. Titanium alloys with the addition of Nb, Ta, Zr, Sn and Mo elements show a promising potential for biomedical applications.  相似文献   

18.
This work focuses on the testing of imidazoline based corrosion inhibitor and the inhibition of carbon steel corrosion caused by carbon dioxide saturated oilfield brine solution. Electrochemical impedance spectroscopy, linear polarization, anodic and cathodic polarization (Tafel extrapolation method) measurements were carried out. In order to investigate imidazoline based corrosion inhibitor efficiency, carbon dioxide saturated oilfield brine solution without inhibitor and solution with added different concentrations of imidazoline based corrosion inhibitor were tested. Those results were compared. Influence of testing solution temperature and stirring of testing solution on the corrosion inhibitor efficiency were investigated. On the basis of obtained results it can be concluded that optimal concentration of imidazoline based corrosion inhibitor is 50 ppm for the successful and effective corrosion protection of pipelines made of carbon steel under test conditions similar to typical oilfield conditions (35°C, atmospheric pressure, stirring rate 400 min–1).  相似文献   

19.
Abstract

The stress corrosion cracking (SCC) and hydrogen embrittlement cracking (HEC) characteristics of welded weathering steel and carbon steel were investigated in aerated acid chloride solution. The electrochemical properties of welded steels were investigated by polarisation and galvanic corrosion tests. Neither weathering steel nor carbon steel showed passive behaviour in this acid chloride solution. The results indicated that weathering steel had better corrosion resistance than carbon steel. Galvanic corrosion between the weldment and the base metal was not observed in the case of weathering steel because the base metal was anodic to the weldment. However, the carbon steel was susceptible to galvanic corrosion because the weldment acts as an anode. Slow strain rate tests (SSRT) were conducted at a constant strain rate of 7.87 × 107 s-1 at corrosion potential, and at potentiostatically controlled anodic and cathodic potentials, to investigate the SCC and HEC properties in acid chloride solution. The welded weathering steel and carbon steel were susceptible to both anodic dissolution SCC and hydrogen evolution HEC. However, weathering steel showed less susceptibility of SCC and HEC than carbon steel at anodic potential because of Cr and Cu compounds in the rust layer, which retarded anodic dissolution, and at cathodic potential due to the presence of Cr, Cu, and Ni in alloy elements, which inhibit the reduction of hydrogen ions. SEM fractographs of both steels revealed a quasicleavage fracture in the embrittled region at applied anodic and cathodic potentials.  相似文献   

20.
丁文成  付朝阳 《材料保护》2012,45(5):32-34,86
烟酸衍生物可有效防止盐酸中H+对钢铁的腐蚀,且无毒、环保,以往对其缓蚀性能研究不多。以烟酸、氯化亚砜和十二胺合成了一种烟酸衍生物,加入至6 mol/L盐酸中用作盐酸酸洗液缓蚀剂,利用失重法和电化学方法就其对Q235钢的缓蚀性能进行了研究。结果表明:在80℃时,缓蚀剂浓度在1 g/L以下缓蚀率可达90%以上;合成的烟酸衍生物对阴极有明显的抑制作用,属于阴极型缓蚀剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号