共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
以芦笋皮为原料,酶法制得膳食纤维后,采用盐酸水解,以溶胀性为指标确定制备微晶纤维素的工艺条件,为芦笋皮的加工利用提供一个新的途径。试验结果表明:在75℃下,盐酸浓度4 mol/L,料酸比1g∶5 mL,酸解时间5 h,制备出的微晶纤维素溶胀性可达6.90 mL/g,比芦笋皮中膳食纤维的溶胀性(4.80 mL/g)高2.10 mL/g。 相似文献
3.
利用马来酸酐对自制棉秆皮微晶纤维素进行接枝改性,再利用二甲基亚砜(DMSO)和1-丁基-3-甲基咪唑氯盐([BMIm]Cl)将改性棉秆皮微晶纤维素溶解成纺丝液进行湿法纺丝。使用红外光谱(FT-IR)和扫描电镜(SEM)等仪器对纤维结构和性能进行表征。探讨了DMSO添加量(与改性棉秆皮微晶纤维素[BMIm]Cl溶解体系的质量比值)和凝固时间对纤维吸附性能和力学性能的影响,以及吸附时间、染液质量浓度、温度、pH对纤维吸附亚甲基蓝的影响,并运用吸附动力学模型和吸附等温线模型对吸附数据进行模拟。结果表明:在DMSO添加量为1.00、凝固时间为120 s条件下制备的改性棉秆皮微晶纤维素纤维对亚甲基蓝的吸附量为159.11 mg/g、断裂强力为30.37 cN,吸附方程符合Ho准二级动力学模型和Freundlich吸附等温线模型。 相似文献
4.
5.
以柚皮纤维素为原料,采用硫酸酸解法制备柚皮纳米微晶纤维素,对纳米微晶纤维素的形貌、结晶结构进行表征分析,以复合膜表面形貌、力学性能、水蒸气透过率和透光率为指标,研究不同添加量柚皮纳米微晶纤维素对羧甲基淀粉膜性能的影响。研究发现:柚皮纳米微晶纤维素为长度为60~180 nm,直径为3~15 nm的棒状晶体;X-射线衍射表明其仍为纤维素I型结构;复合膜电镜图光滑平整;纳米微晶纤维素添加量为5%时,复合膜的拉伸强度较原膜提高最大(52.22%);而随着纳米微晶纤维素的添加,复合膜的断裂伸长率呈下降趋势;当添加量为7%时,复合膜水蒸气透过率降低最大(23%);纳米微晶纤维素的添加量大于3%时显著降低复合膜的透光率,但未改变原膜在不同波长下的透光率。因此,添加柚皮纳米微晶纤维素能有效改善复合膜的性能,制备出综合性能优良的羧甲基淀粉复合膜。 相似文献
6.
为提高壳聚糖(CS)对阴离子染料刚果红的吸附性能,以尿素溶剂法低温溶解棉秆皮微晶纤维素(MCC)作为纺丝基体,以改性壳聚糖为分散吸附材料,经湿法纺丝和冷冻干燥制备棉秆皮微晶纤维素/改性壳聚糖(MCC/DCS)吸附纤维。通过正交试验方法优化壳聚糖改性工艺,利用单因素方法优化纺丝工艺,并对DSC粉末的化学结构、MCC/DCS吸附纤维形貌结构及其对刚果红染料吸附性能等进行测试与表征。结果表明:壳聚糖改性较优工艺为醋酸用量55 mL,2,5-二硫二脲用量0.6 g,壳聚糖用量1.0 g,甲醛用量8 mL;MCC/DCS纤维制备的较佳工艺为DCS添加量1.5 g, 纺丝凝固时间1 h时,MCC/DCS吸附纤维的吸附效果和力学性能均较好;当刚果红染液质量浓度为250 mg/L时,MCC/DCS纤维对刚果红染料达到最大吸附量,为96.03 mg/g。 相似文献
7.
8.
以纳米微晶纤维素(NCC)为骨架,甲基丙烯酸六氟丁酯为单体,通过乳液接枝聚合合成新型表面施胶剂,并进行表面施胶的应用研究。考察乳化剂用量和含氟单体与NCC质量比对接枝率、接枝效率和单体转化率的影响;在较优条件下改性NCC接枝率、接枝效率、单体转化率分别为125.2%、27.7%、90.1%。通过红外光谱进行接枝前后NCC的官能团变化分析。通过纳米粒度仪分析了未改性/改性NCC的Zeta电位及粒径变化;结果表明,所得改性NCC在乳液体系中具有良好的稳定性;将其用于表面施胶,施胶处理后的纸张接触角能够达到120°,抗张指数较使用未改性NCC的纸张可提高26.4%,达到22.0 N·m/g。 相似文献
9.
《食品与发酵工业》2019,(20):202-208
该文以丰都红心柚的中果皮为原料,采用硫酸水解法制备柚皮纳米纤维素(nano-crystal cellulose,NCC)。以H2SO4浓度、反应温度、反应时间对得率的影响进行单因素试验和响应面优化分析,并对制备出的纳米纤维素结构进行扫描电镜、红外光谱和X-射线衍射等分析。在H2SO4质量分数为62%、反应温度为50℃、反应时间为78 min的条件下制备出的NCC得率最高,为63. 27%。通过扫描电镜观察得知柚皮NCC呈类球状结构均匀分布,粒径在100~200 nm;由红外光谱和X射线衍射鉴定出样品为纤维素Ⅰ型结构,结晶度达到53. 75%。相较于柚皮微晶纤维素(microcrystalline cellulose,MCC),制备出的NCC具有更规则的结构、更大的比表面积和更高的结晶度,使柚皮纤维素具有了更高的应用价值。 相似文献
10.
为提高棉秆皮微晶纤维素(MCC)纤维的阻燃性能,采用9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)为改性剂对氧化石墨烯(GO)进行改性,将改性后的GO(DOPO-GO)与MCC共混,通过湿法纺丝制得MCC/DOPO-GO阻燃纤维,并对其阻燃性能、热学性能和力学性能进行分析。结果表明:添加DOPO-GO阻燃剂的MCC纤维的极限氧指数为27.3%,较MCC纤维提高了66.5%;与MCC纤维相比,MCC/DOPO-GO阻燃纤维热分解所需的热焓值由221.8 J/g提升至1 502 J/g,热学稳定性得到提高;MCC/DOPO-GO阻燃纤维燃烧后形成的残炭致密且连续,石墨化程度提高;MCC/DOPO-GO纤维的力学性能也得到了极大改善,其断裂强度由MCC纤维的0.4 cN/dtex提高至2.2 cN/dtex。 相似文献
11.
以柚皮为原料,采用化学分离方法对其中纤维素的提取工艺进行了研究,以得到对重金属离子有较高吸附能力的纤维素。通过单因素实验,研究了提取过程中氢氧化钠浓度、过氧化氢浓度、脱色温度和脱色时间等工艺参数,在此基础上进行正交实验,通过极差分析确定了最佳的工艺条件,即氢氧化钠浓度为6%、过氧化氢浓度为10%、脱色时间30min和脱色温度为30℃时,柚皮纤维素含量最佳,为67.7%,对Cu2+、Pb2+的吸附容量分别为76.9mg/g与96.4mg/g,产品为乳白色粉末,带有略微柚香。 相似文献
12.
13.
14.
15.
以茶渣为原料,采用盐酸水解法制备茶渣微晶纤维素。通过单因素试验研究了酸解时间、酸解温度、盐酸浓度及料液比对微晶纤维素得率、聚合度和结晶度的影响,采用正交试验优化了工艺参数,并运用X-射线衍射和红外光谱对微晶纤维素产品进行表征。试验结果表明:最佳制备工艺条件为酸解温度95℃、盐酸质量分数8%、酸解时间90 min、料液比1∶16(g/mL)。各因素对得率影响的显著性为:酸解温度盐酸浓度酸解时间料液比;在此条件下,茶渣微晶纤维素产品的得率为54.34%,聚合度为128;X-射线衍射和红外光谱分析表明,茶渣微晶纤维素与原纤维素材料结构一致,结晶度达67.77%,晶粒尺寸为3.98 nm,晶型为纤维素Ⅰ型。 相似文献
16.
对棉短绒制备微晶纤维素的工艺进行研究,主要对酸催化乙醇法制浆工艺的加乙酸量、液比和保温时间对浆料高锰酸钾值、得率、漂后浆料的白度、α-纤维素含量和高锰酸钾值的影响进行了研究;对制备MCC酸水解工艺的液比、水解温度、水解时间进行研究。结果表明:液比和保温时间对降低棉短绒高锰酸钾值的贡献最显著,加酸量也有一定的影响。棉短绒酸催化乙醇法最佳制浆工艺为:加乙酸量1%,液比1:8,保温时间60min。该制浆条件下棉短绒乙醇浆高锰酸钾值为8.7,得率81.93%,经EAPP漂白后浆料的高锰酸钾值为3.3,α-纤维素含量为92.48%,白度为86.56%ISO;酸水解制备微晶纤维素的最佳工艺条件为:液比1:7、水解温度60℃、水解时间40min、5%稀碱处理温度80~90℃、碱处理时间40min。 相似文献
17.
18.
研究了玉米秸秆制备微晶纤维素的预水解乙醇法制浆工艺,对预水解的保温温度、保温时间以及加酸量,乙醇法制浆的保温时间及加酸量进行了研究。研究结果表明:预水解的最佳工艺为,液比1:6,升温时间30min,保温时间120min,水解温度160℃,加酸量1%;乙醇法制浆的最佳工艺为,乙醇溶液(配比为乙醇:水=6:4),液比1:6,60min内升温达160℃后装锅,继续升温到达最高温度195℃,乙酸用量8%,保温时间60min。 相似文献
19.
以改性柚皮纤维、大豆分离蛋白为原料制备复合膜。研究了改性柚皮纤维、大豆分离蛋白对复合膜结构与性能的影响。采用红外光谱法(FT/IR)、差式扫描量热法(DSC)和热重法(TGA)对复合膜进行结构与性能表征。结果表明:复合膜较相同条件下改性柚皮纤维和大豆分离蛋白单纯膜的结构更加稳定。在单因素试验基础上,采用响应面Box-Behnken试验设计法优化复合膜的制膜工艺。以物理强度、透氧性、透湿性为评价指标,结合多指标综合加权评分法对复合膜各项性能进行综合评定。结果表明,在大豆分离蛋白3.9%,改性柚皮纤维2.9%,超声功率210 W,超声时间15 min的条件下制备复合膜的综合评分高达79.91,与预测值80.05基本相符。 相似文献